結果
問題 | No.659 徘徊迷路 |
ユーザー | penguinshunya |
提出日時 | 2020-01-27 18:19:35 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 48 ms / 2,000 ms |
コード長 | 4,541 bytes |
コンパイル時間 | 2,269 ms |
コンパイル使用メモリ | 184,304 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-14 12:02:17 |
合計ジャッジ時間 | 3,711 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
5,248 KB |
testcase_01 | AC | 15 ms
5,376 KB |
testcase_02 | AC | 41 ms
5,376 KB |
testcase_03 | AC | 41 ms
5,376 KB |
testcase_04 | AC | 41 ms
5,376 KB |
testcase_05 | AC | 9 ms
5,376 KB |
testcase_06 | AC | 13 ms
5,376 KB |
testcase_07 | AC | 12 ms
5,376 KB |
testcase_08 | AC | 18 ms
5,376 KB |
testcase_09 | AC | 41 ms
5,376 KB |
testcase_10 | AC | 47 ms
5,376 KB |
testcase_11 | AC | 48 ms
5,376 KB |
testcase_12 | AC | 11 ms
5,376 KB |
testcase_13 | AC | 42 ms
5,376 KB |
testcase_14 | AC | 41 ms
5,376 KB |
testcase_15 | AC | 48 ms
5,376 KB |
testcase_16 | AC | 48 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < int(n); i++) #define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--) #define reps(i, n) for (int i = 1; i <= int(n); i++) #define rreps(i, n) for (int i = int(n); i >= 1; i--) #define repc(i, n) for (int i = 0; i <= int(n); i++) #define rrepc(i, n) for (int i = int(n); i >= 0; i--) #define repi(i, a, b) for (int i = int(a); i < int(b); i++) #define repic(i, a, b) for (int i = int(a); i <= int(b); i++) #define each(x, y) for (auto &x : y) #define all(a) (a).begin(), (a).end() #define bit(b) (1ll << (b)) using namespace std; using i32 = int; using i64 = long long; using u64 = unsigned long long; using f80 = long double; using vi32 = vector<i32>; using vi64 = vector<i64>; using vu64 = vector<u64>; using vf80 = vector<f80>; using vstr = vector<string>; inline void yes() { cout << "Yes" << '\n'; exit(0); } inline void no() { cout << "No" << '\n'; exit(0); } inline i64 gcd(i64 a, i64 b) { if (min(a, b) == 0) return max(a, b); if (a % b == 0) return b; return gcd(b, a % b); } inline i64 lcm(i64 a, i64 b) { return a / gcd(a, b) * b; } inline u64 xorshift() { static u64 x = 88172645463325252ull; x = x ^ (x << 7); return x = x ^ (x >> 9); } template <typename T> class pqasc : public priority_queue<T, vector<T>, greater<T>> {}; template <typename T> class pqdesc : public priority_queue<T, vector<T>, less<T>> {}; template <typename T> inline void amax(T &x, T y) { if (x < y) x = y; } template <typename T> inline void amin(T &x, T y) { if (x > y) x = y; } template <typename T> inline T exp(T x, i64 n, T e = 1) { T r = e; while (n > 0) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } template <typename T> inline T bis(T ok, T ng, function<bool(T)> f, T eps = 1) { while (abs(ok - ng) > eps) { T mi = (ok + ng) / 2; (f(mi) ? ok : ng) = mi; } return ok; } template <typename T> istream& operator>>(istream &is, vector<T> &v) { each(x, v) is >> x; return is; } template <typename T> ostream& operator<<(ostream &os, vector<T> &v) { rep(i, v.size()) { if (i) os << ' '; os << v[i]; } return os; } template <typename T, typename S> istream& operator>>(istream &is, pair<T, S> &p) { is >> p.first >> p.second; return is; } template <typename T, typename S> ostream& operator<<(ostream &os, pair<T, S> &p) { os << p.first << ' ' << p.second; return os; } void solve(); int main() { ios::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(16); solve(); return 0; } int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; template <typename T> struct Matrix { vector<vector<T>> v; int r, c; Matrix(int r, int c, T d) : r(r), c(c) { v = vector<vector<T>>(r, vector<T>(c, d)); } Matrix(vector<vector<T>> v) : v(v) { r = v.size(); c = v[0].size(); } vector<T>& operator[](int x) { return v[x]; } Matrix<T> operator*=(Matrix<T> that) { assert(c == that.r); auto ret = Matrix<T>(r, that.c, 0); rep(i, r) rep(j, that.c) rep(k, c) { ret[i][j] += v[i][k] * that[k][j]; } return *this = ret; } Matrix<T> operator*(Matrix<T> that) { return *this *= that; } Matrix<T> pow(i64 n) { assert(r == c); auto e = Matrix<T>(r, c, 0); rep(i, r) e[i][i] = 1; return exp(*this, n, e); } Matrix<T> inverse() { assert(c == r); vector<vector<T>> a = v; auto x = Matrix<T>(r, r, 0); rep(i, r) x[i][i] = 1; rep(i, r) { T buf = (T) 1 / a[i][i]; rep(j, r) { a[i][j] *= buf; x[i][j] *= buf; } rep(j, r) { if (i == j) continue; buf = a[j][i]; rep(k, r) { a[j][k] -= a[i][k] * buf; x[j][k] -= x[i][k] * buf; } } } return x; } }; void solve() { int R, C, T; cin >> R >> C >> T; int sx, sy, gx, gy; cin >> sx >> sy >> gx >> gy; vstr B(R); rep(i, R) cin >> B[i]; Matrix<f80> mat(vector<vf80>(64, vf80(64))); reps(i, R - 2) reps(j, C - 2) { if (B[i][j] == '#') continue; int cnt = 0; rep(k, 4) { int x = i + dx[k]; int y = j + dy[k]; if (B[x][y] == '.') cnt++; } if (cnt == 0) { mat[(i - 1) * 8 + (j - 1)][(i - 1) * 8 + (j - 1)] = 1; continue; } rep(k, 4) { int x = i + dx[k]; int y = j + dy[k]; if (B[x][y] == '.') { mat[(i - 1) * 8 + (j - 1)][(x - 1) * 8 + (y - 1)] = 1.0 / cnt; } } } Matrix<f80> vec(vector<vf80>(1, vf80(64))); vec[0][(sx - 1) * 8 + (sy - 1)] = 1; auto ans = vec * mat.pow(T); cout << ans[0][(gx - 1) * 8 + (gy - 1)] << endl; }