結果
問題 | No.265 数学のテスト |
ユーザー | kyuridenamida |
提出日時 | 2015-08-07 22:44:55 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,280 bytes |
コンパイル時間 | 1,685 ms |
コンパイル使用メモリ | 172,656 KB |
実行使用メモリ | 10,240 KB |
最終ジャッジ日時 | 2024-07-18 05:12:13 |
合計ジャッジ時間 | 5,476 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | RE | - |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | RE | - |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | RE | - |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | RE | - |
testcase_29 | WA | - |
testcase_30 | RE | - |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | AC | 1 ms
5,376 KB |
testcase_35 | AC | 1 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; int d; const double eps = 1e-9; // 多項式 たとえば y=x^3 + -3x +5 なら y=[5,-3,0,1] みたいな表現 typedef vector<double> Poly; // 無駄な係数0の高次項を消す Poly normalize(Poly p){ while( p.size() && p.back() == 0 ) p.pop_back(); p.resize(d+1); return p; } //多項式の微分 Poly dfdx(Poly p){ Poly res; if( p.size() != 0 ){ res.resize(p.size()-1); for(int i = 0 ; i < res.size() ; i++) res[i] = (i+1) * p[i+1]; } return res; } //多項式の割り算 res.first に商 res.second に余り pair<Poly,Poly> pDiv(Poly f,Poly g){ f = normalize(f); g = normalize(g); if( g.size() == 0 ) assert( "申し訳ないが0割りはNG" == "" ); int m = max(f.size(),g.size()); Poly p(m); while( f.size() >= g.size() ){ int deg = f.size() - g.size(); double coef = f.back() / g.back(); p[deg] = coef; for(int i = 0 ; i < g.size() ; i++) f[i+deg] -= coef * g[i]; f = normalize(f); } return {normalize(p),normalize(f)}; } //多項式の計算 double calc(const Poly &p,double x){ double ans = 0; for(int i = 0 ; i < p.size() ; i++) ans += p[i] * pow(x,i); return ans; } //多項式の表示(とりあえずできるだけ自然な表現になるようにしてる void view(Poly p){ p = normalize(p); if( p.size() == 0 ){ cout << 0 << endl; return; } int fst = 0; for(int i = p.size()-1 ; i >= 0 ; i--){ if( p[i] == 0 ) continue; if( fst++ && p[i] > 0 ) cout << "+"; if( i != 0 && p[i] == 1 )cout << ""; else if( i != 0 && p[i] == -1 )cout << "-"; else printf("%lf",p[i]); if( i >= 2 ) cout << "x^" << i; else if( i == 1 ) cout << "x"; } cout << endl; } //すつるむ列を1つもってくる vector<Poly> getSturm(Poly f){ vector<Poly> fs(2); fs[0] = normalize(f); fs[1] = normalize(dfdx(f)); for(int i = 1 ; ; i++){ if( fs[i].size() > 1){ Poly remain = pDiv(fs[i-1],fs[i]).second; for( auto &x : remain ) x = -x; fs.push_back(normalize(remain)); }else break; } if( fs.back().size() == 0 ){ // 定数が0になっちゃうなら,多分重根の解となる式?を使って次数を下げる問題に帰着させる return getSturm(pDiv(f,fs[fs.size()-2]).first); } return fs; } string s; int p; Poly operator + (Poly a,Poly b){ for(int i = 0 ; i < b.size() ; i++) a[i] += b[i]; return a; } Poly operator * (Poly a,Poly b){ Poly c(d+1); for(int i = 0 ; i < a.size() ; i++){ for(int j = 0 ; j < b.size() ; j++){ if( i + j < c.size() ) c[i+j] += a[i]*b[j]; } } return c; } Poly f(); Poly g(); Poly h(); Poly f(){ Poly r = g(); while( s[p] == '+' ){ p++; r = r + g(); } return r; } Poly g(){ Poly r = h(); while( s[p] == '*' ){ p++; Poly t = h(); r = r * t; } return r; } Poly h(){ if( s[p] == 'd' ){ p += 2; Poly r = f(); p++; return dfdx(r); }else{ if( s[p] == 'x' ){ Poly r(d+1); r[1] = 1; p++; return r; }else{ double ans = 0; while( '0' <= s[p] && s[p] <= '9' ) ans = ans * 10 + s[p++] - '0'; Poly r = Poly(d+1); r[0] = ans; return r; } } } int main(){ int N; cin >> N; cin >> d; cin >> s; p = 0; Poly r = f(); for(int i = 0 ; i < r.size() ; i++) cout << (long long)r[i] << (i+1==r.size()?"\n":" "); }