結果
問題 | No.265 数学のテスト |
ユーザー | kyuridenamida |
提出日時 | 2015-08-07 22:46:35 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 9 ms / 2,000 ms |
コード長 | 1,570 bytes |
コンパイル時間 | 1,362 ms |
コンパイル使用メモリ | 165,392 KB |
実行使用メモリ | 9,984 KB |
最終ジャッジ日時 | 2024-11-24 11:17:11 |
合計ジャッジ時間 | 2,388 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 9 ms
9,984 KB |
testcase_01 | AC | 6 ms
6,912 KB |
testcase_02 | AC | 7 ms
5,248 KB |
testcase_03 | AC | 5 ms
5,248 KB |
testcase_04 | AC | 5 ms
5,248 KB |
testcase_05 | AC | 6 ms
5,248 KB |
testcase_06 | AC | 4 ms
5,248 KB |
testcase_07 | AC | 5 ms
5,248 KB |
testcase_08 | AC | 6 ms
5,248 KB |
testcase_09 | AC | 4 ms
5,248 KB |
testcase_10 | AC | 5 ms
5,248 KB |
testcase_11 | AC | 5 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 1 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 1 ms
5,248 KB |
testcase_25 | AC | 3 ms
5,248 KB |
testcase_26 | AC | 1 ms
5,248 KB |
testcase_27 | AC | 1 ms
5,248 KB |
testcase_28 | AC | 1 ms
5,248 KB |
testcase_29 | AC | 1 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 1 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 1 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; int d; const double eps = 1e-9; // 多項式 たとえば y=x^3 + -3x +5 なら y=[5,-3,0,1] みたいな表現 typedef vector<double> Poly; // 無駄な係数0の高次項を消す Poly normalize(Poly p){ while( p.size() && p.back() == 0 ) p.pop_back(); p.resize(d+1); return p; } //多項式の微分 Poly dfdx(Poly p){ Poly res; if( p.size() != 0 ){ res.resize(p.size()-1); for(int i = 0 ; i < res.size() ; i++) res[i] = (i+1) * p[i+1]; } res.resize(d+1); return res; } string s; int p; Poly operator + (Poly a,Poly b){ for(int i = 0 ; i < b.size() ; i++) a[i] += b[i]; return a; } Poly operator * (Poly a,Poly b){ Poly c(d+1); for(int i = 0 ; i < a.size() ; i++){ for(int j = 0 ; j < b.size() ; j++){ if( i + j < c.size() ) c[i+j] += a[i]*b[j]; } } return c; } Poly f(); Poly g(); Poly h(); Poly f(){ Poly r = g(); while( s[p] == '+' ){ p++; r = r + g(); } return r; } Poly g(){ Poly r = h(); while( s[p] == '*' ){ p++; Poly t = h(); r = r * t; } return r; } Poly h(){ if( s[p] == 'd' ){ p += 2; Poly r = f(); p++; return dfdx(r); }else{ if( s[p] == 'x' ){ Poly r(d+1); r[1] = 1; p++; return r; }else{ double ans = 0; while( '0' <= s[p] && s[p] <= '9' ) ans = ans * 10 + s[p++] - '0'; Poly r = Poly(d+1); r[0] = ans; return r; } } } int main(){ int N; cin >> N; cin >> d; cin >> s; p = 0; Poly r = f(); for(int i = 0 ; i < r.size() ; i++) cout << (long long)r[i] << (i+1==r.size()?"\n":" "); }