結果
| 問題 | No.718 行列のできるフィボナッチ数列道場 (1) | 
| コンテスト | |
| ユーザー |  mkawa2 | 
| 提出日時 | 2020-01-31 10:02:10 | 
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 33 ms / 2,000 ms | 
| コード長 | 2,940 bytes | 
| コンパイル時間 | 97 ms | 
| コンパイル使用メモリ | 12,928 KB | 
| 実行使用メモリ | 11,008 KB | 
| 最終ジャッジ日時 | 2024-09-17 06:45:45 | 
| 合計ジャッジ時間 | 1,822 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 20 | 
ソースコード
import sys
sys.setrecursionlimit(10 ** 6)
int1 = lambda x: int(x) - 1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def SI(): return sys.stdin.readline()[:-1]
def MI(): return map(int, sys.stdin.readline().split())
def MI1(): return map(int1, sys.stdin.readline().split())
def MF(): return map(float, sys.stdin.readline().split())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LF(): return list(map(float, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
dij = [(0, 1), (1, 0), (0, -1), (-1, 0)]
class mint:
    def __init__(self, x):
        self.__x = x % md
    def __str__(self):
        return str(self.__x)
    def __add__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x + other)
    def __sub__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x - other)
    def __rsub__(self, other):
        return mint(other - self.__x)
    def __mul__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x * other)
    __radd__ = __add__
    __rmul__ = __mul__
    def __truediv__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x * pow(other, md - 2, md))
    def __pow__(self, power, modulo=None):
        return mint(pow(self.__x, power, md))
class Fibonacci:
    def __init__(self):
        coff = [1, 1]
        self.f0 = [0,1]
        # 上2つは問題ごとに手作業で設定
        # af(n)+bf(n+1)+cf(n+2)+df(n+3)=f(n+4)みたいなとき
        # coff=[a,b,c,d]
        # 初期値f0(f(0)からf(3))
        n = len(coff)
        ff = [[0] * n for _ in range(2 * n - 1)]
        for i in range(n): ff[i][i] = mint(1)
        for i in range(n, 2 * n - 1):
            ffi = ff[i]
            for j, c in enumerate(coff, i - n):
                ffj = ff[j]
                for k in range(n): ffi[k] += c * ffj[k]
        self.bn = 1 << (n - 1).bit_length()
        self.base = ff[self.bn]
        self.ff = ff
        self.n = n
    def __mm(self, aa, bb):
        n = self.n
        res = [0] * (n * 2 - 1)
        for i, a in enumerate(aa):
            for j, b in enumerate(bb):
                res[i + j] += a * b
        for i in range(n, 2 * n - 1):
            c = res[i]
            ffi = self.ff[i]
            for j in range(n):
                res[j] += c * ffi[j]
        return res[:n]
    def v(self, x):
        base = self.base
        aa = self.ff[x % self.bn]
        x //= self.bn
        while x:
            if x & 1: aa = self.__mm(aa, base)
            base = self.__mm(base, base)
            x >>= 1
        return sum(a * f for a, f in zip(aa, self.f0))
md=10**9+7
def main():
    n=II()
    f=Fibonacci()
    print(f.v(n)*f.v(n+1))
main()
            
            
            
        