結果
| 問題 |
No.976 2 の 128 乗と M
|
| ユーザー |
|
| 提出日時 | 2020-01-31 21:29:50 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 13,954 bytes |
| コンパイル時間 | 2,539 ms |
| コンパイル使用メモリ | 195,964 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-17 07:13:40 |
| 合計ジャッジ時間 | 4,085 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 50 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
# define REP(i,n) for (int i=0;i<(n);++i)
# define rep(i,a,b) for(int i=a;i<(b);++i)
# define all(v) v.begin(),v.end()
# define showVector(v) REP(i,v.size()){cout << (v[i]) << " ";} cout << endl;
template<class T> inline bool chmin(T &a, T b){ if(a > b) { a = b; return true;} return false;}
template<class T> inline bool chmax(T &a, T b){ if(a < b) { a = b; return true;} return false;}
typedef long long int ll;
typedef pair<ll,ll> P_ii;
typedef pair<double,double> P_dd;
template<class T>
vector<T> make_vec(size_t a){
return vector<T>(a);
}
template<class T, class... Ts>
auto make_vec(size_t a, Ts... ts){
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
template<typename T,typename V>
typename enable_if<is_class<T>::value==0>::type
fill_v(T &t,const V &v){t=v;}
template<typename T,typename V>
typename enable_if<is_class<T>::value!=0>::type
fill_v(T &t,const V &v){
for(auto &e:t) fill_v(e,v);
}
ll gcd(ll a, ll b) {
if(a < b) swap(a,b);
if(b == 0) return a;
return gcd(b, a % b);
}
ll lcm(ll a, ll b){
ll g = gcd(a,b);
return (a/g)*b;
}
// 素数判定 O(√n)
bool is_prime(int n){
for(int i = 2; i * i <= n; i++){
if(n % i == 0) return false;
}
return true;
}
// 約数列挙 O(√n)
vector<ll> divisor(ll n){
vector<ll> res;
for(ll i = 1; i * i <= n; i++){
if(n % i == 0){
res.push_back(i);
if(i != n / i) res.push_back(n / i);
}
}
return res;
}
vector<pair<ll, ll> > prime_factorize(ll n) {
vector<pair<ll, ll> > res;
for (ll p = 2; p * p <= n; ++p) {
if (n % p != 0) continue;
ll num = 0;
while (n % p == 0) { ++num; n /= p; }
res.push_back(make_pair(p, num));
}
if (n != 1) res.push_back(make_pair(n, 1));
return res;
}
// auto mod int
// https://youtu.be/L8grWxBlIZ4?t=9858
// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize
// https://youtu.be/8uowVvQ_-Mo?t=1329 : division
const int mod = 1000000007;
struct mint {
ll x; // typedef long long ll;
mint(ll x=0):x(x%mod){}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
mint res(*this);
return res+=a;
}
mint operator-(const mint a) const {
mint res(*this);
return res-=a;
}
mint operator*(const mint a) const {
mint res(*this);
return res*=a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod-2);
}
mint& operator/=(const mint a) {
return (*this) *= a.inv();
}
mint operator/(const mint a) const {
mint res(*this);
return res/=a;
}
};
const int MOD = 1000000007;
const int inf=1e9+7;
const ll longinf=1LL<<60 ;
void addM(ll &a, ll b) {
a += b;
if (a >= MOD) a -= MOD;
}
void mulM(ll &a, ll b) {
a = ((a%MOD)*(b%MOD))%MOD ;
}
ll powM(ll a,ll b) {
ll ret = 1;
ll tmp = a;
while(b>0) {
if((b&1)==1) ret = (ret * tmp) % MOD;
tmp = (tmp * tmp) % MOD;
b = b >> 1;
}
return ret;
}
// mod. m での a の逆元 a^{-1} を計算する
ll modinv(ll a, ll m) {
ll b = m, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
// ラングレンス圧縮
vector<pair<char, int>> rang_com(string s){
vector<pair<char, int>> ret;
string t = s;
t.erase(unique(all(t)), t.end());
int now = 0;
int pre = 0;
for(auto ct : t){
while(now < s.size() && s[now] == ct) now++;
if(ret.size() == 0){
ret.push_back({ct, now});
} else {
ret.push_back({ct, now - pre});
}
pre = now;
}
return ret;
}
namespace FFT{
using dbl = double;
using Int = long long;
struct num{
dbl x,y;
num(){x=y=0;}
num(dbl x,dbl y):x(x),y(y){}
};
inline num operator+(num a,num b){
return num(a.x+b.x,a.y+b.y);
}
inline num operator-(num a,num b){
return num(a.x-b.x,a.y-b.y);
}
inline num operator*(num a,num b){
return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
inline num conj(num a){
return num(a.x,-a.y);
}
int base=1;
vector<num> rts={{0,0},{1,0}};
vector<int> rev={0,1};
const dbl PI=acosl(-1.0);
void ensure_base(int nbase){
if(nbase<=base) return;
rev.resize(1<<nbase);
for(int i=0;i<(1<<nbase);i++)
rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));
rts.resize(1<<nbase);
while(base<nbase){
dbl angle=2*PI/(1<<(base+1));
for(int i=1<<(base-1);i<(1<<base);i++){
rts[i<<1]=rts[i];
dbl angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
}
base++;
}
}
void fft(vector<num> &a,int n=-1){
if(n==-1) n=a.size();
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for(int i=0;i<n;i++)
if(i<(rev[i]>>shift))
swap(a[i],a[rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
num z=a[i+j+k]*rts[j+k];
a[i+j+k]=a[i+j]-z;
a[i+j]=a[i+j]+z;
}
}
}
}
vector<num> fa;
template<typename T>
vector<Int> multiply(const vector<T> &a,const vector<T> &b){
int need=a.size()+b.size()-1;
int nbase=0;
while((1<<nbase)<need) nbase++;
ensure_base(nbase);
int sz=1<<nbase;
if(sz>(int)fa.size()) fa.resize(sz);
for(int i=0;i<sz;i++){
int x=(i<(int)a.size()?a[i]:0);
int y=(i<(int)b.size()?b[i]:0);
fa[i]=num(x,y);
}
fft(fa,sz);
num r(0,-0.25/sz);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
if(i!=j)
fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
fa[i]=z;
}
fft(fa,sz);
vector<Int> res(need);
for(int i=0;i<need;i++)
res[i]=fa[i].x+0.5;
return res;
}
};
struct bigint {
using ll = long long;
using vll = vector<ll>;
constexpr static ll base = 1000000000;
constexpr static ll base_digits = 9;
vll a;
ll sign;
bigint():sign(1){}
bigint(ll v){*this=v;}
bigint(const string &s){read(s);}
void operator=(const bigint &v){
sign=v.sign;
a=v.a;
}
void operator=(ll v){
sign=1;
if(v<0) sign=-1,v=-v;
for(;v>0;v=v/base) a.push_back(v%base);
}
bigint operator+(const bigint &v) const{
if(sign==v.sign){
bigint res=v;
for(ll i=0,carry=0;i<(ll)max(a.size(),v.a.size())||carry;++i){
if(i==(ll)res.a.size()) res.a.push_back(0);
res.a[i]+=carry+(i<(ll)a.size()?a[i]:0);
carry=res.a[i]>=base;
if(carry) res.a[i]-=base;
}
return res;
}
return *this -(-v);
}
bigint operator-(const bigint &v) const{
if(sign==v.sign){
if(abs()>=v.abs()){
bigint res=*this;
for(ll i=0,carry=0;i<(ll)v.a.size()||carry;++i){
res.a[i]-=carry+(i<(ll)v.a.size()?v.a[i]:0);
carry=res.a[i]<0;
if(carry) res.a[i]+=base;
}
res.trim();
return res;
}
return -(v-*this);
}
return *this+(-v);
}
void operator*=(ll v){
if(v<0) sign=-sign,v=-v;
for(ll i=0,carry=0;i<(ll)a.size()|| carry;++i){
if(i ==(ll)a.size()) a.push_back(0);
ll cur=a[i] *(ll)v+carry;
carry=(ll)(cur/base);
a[i]=(ll)(cur%base);
// asm("divl %%ecx" : "=a"(carry),"=d"(a[i]) : "A"(cur),"c"(base));
}
trim();
}
bigint operator*(ll v) const{
bigint res=*this;
res *=v;
return res;
}
friend pair<bigint,bigint> divmod(const bigint &a1,const bigint &b1){
ll norm=base/(b1.a.back()+1);
bigint a=a1.abs()*norm;
bigint b=b1.abs()*norm;
bigint q,r;
q.a.resize(a.a.size());
for(ll i=a.a.size()-1;i>=0;i--){
r *=base;
r+=a.a[i];
ll s1=r.a.size()<=b.a.size() ? 0 : r.a[b.a.size()];
ll s2=r.a.size()<=b.a.size()-1 ? 0 : r.a[b.a.size()-1];
ll d=((ll)base*s1+s2)/b.a.back();
r-=b*d;
while(r<0) r+=b,--d;
q.a[i]=d;
}
q.sign=a1.sign*b1.sign;
r.sign=a1.sign;
q.trim();
r.trim();
return make_pair(q,r/norm);
}
bigint operator/(const bigint &v) const{
return divmod(*this,v).first;
}
bigint operator%(const bigint &v) const{
return divmod(*this,v).second;
}
void operator/=(ll v){
if(v<0) sign=-sign,v=-v;
for(ll i=(ll)a.size()-1,rem=0;i>=0;--i){
ll cur=a[i]+rem *(ll)base;
a[i]=(ll)(cur/v);
rem=(ll)(cur%v);
}
trim();
}
bigint operator/(ll v) const{
bigint res=*this;
res/=v;
return res;
}
ll operator%(ll v) const{
if(v<0) v=-v;
ll m=0;
for(ll i=a.size()-1;i>=0;--i) m=(a[i]+m *(ll)base)%v;
return m*sign;
}
void operator+=(const bigint &v){
*this=*this+v;
}
void operator-=(const bigint &v){
*this=*this-v;
}
void operator*=(const bigint &v){
*this=*this*v;
}
void operator/=(const bigint &v){
*this=*this/v;
}
bool operator<(const bigint &v) const{
if(sign!=v.sign) return sign<v.sign;
if(a.size()!=v.a.size()) return a.size()*sign<v.a.size()*v.sign;
for(ll i=a.size()-1;i>=0;i--)
if(a[i]!=v.a[i]) return a[i]*sign<v.a[i]*sign;
return false;
}
bool operator>(const bigint &v) const{
return v<*this;
}
bool operator<=(const bigint &v) const{
return !(v<*this);
}
bool operator>=(const bigint &v) const{
return !(*this<v);
}
bool operator==(const bigint &v) const{
return !(*this<v)&&!(v<*this);
}
bool operator!=(const bigint &v) const{
return *this<v|| v<*this;
}
void trim(){
while(!a.empty()&&!a.back()) a.pop_back();
if(a.empty()) sign=1;
}
bool isZero() const{
return a.empty()||(a.size()==1&&!a[0]);
}
bigint operator-() const{
bigint res=*this;
res.sign=-sign;
return res;
}
bigint abs() const{
bigint res=*this;
res.sign*=res.sign;
return res;
}
ll longValue() const{
ll res=0;
for(ll i=a.size()-1;i>=0;i--) res=res*base+a[i];
return res*sign;
}
friend bigint gcd(const bigint &a,const bigint &b){
return b.isZero() ? a : gcd(b,a%b);
}
friend bigint lcm(const bigint &a,const bigint &b){
return a/gcd(a,b)*b;
}
void read(const string &s){
sign=1;
a.clear();
ll pos=0;
while(pos<(ll)s.size()&&(s[pos]=='-'|| s[pos]=='+')){
if(s[pos]=='-') sign=-sign;
++pos;
}
for(ll i=s.size()-1;i>=pos;i-=base_digits){
ll x=0;
for(ll j=max(pos,i-base_digits+1);j<=i;j++) x=x*10+s[j]-'0';
a.push_back(x);
}
trim();
}
friend istream &operator>>(istream &stream,bigint &v){
string s;
stream>>s;
v.read(s);
return stream;
}
friend ostream &operator<<(ostream &stream,const bigint &v){
if(v.sign==-1) stream<<'-';
stream<<(v.a.empty()?0:v.a.back());
for(ll i=(ll)v.a.size()-2;i>=0;--i)
stream<<setw(base_digits)<<setfill('0')<<v.a[i];
return stream;
}
static vll convert_base(const vll &a,ll old_digits,ll new_digits){
vll p(max(old_digits,new_digits)+1);
p[0]=1;
for(ll i=1;i<(ll)p.size();i++) p[i]=p[i-1]*10;
vll res;
ll cur=0;
ll cur_digits=0;
for(ll i=0;i<(ll)a.size();i++){
cur+=a[i]*p[cur_digits];
cur_digits+=old_digits;
while(cur_digits>=new_digits){
res.push_back(signed(cur%p[new_digits]));
cur/=p[new_digits];
cur_digits-=new_digits;
}
}
res.push_back((signed)cur);
while(!res.empty()&&!res.back()) res.pop_back();
return res;
}
static vll karatsubaMultiply(const vll &a,const vll &b){
ll n=a.size();
vll res(n+n);
if(n<=32){
for(ll i=0;i<n;i++)
for(ll j=0;j<n;j++)
res[i+j]+=a[i]*b[j];
return res;
}
ll k=n>>1;
vll a1(a.begin(),a.begin()+k);
vll a2(a.begin()+k,a.end());
vll b1(b.begin(),b.begin()+k);
vll b2(b.begin()+k,b.end());
vll a1b1=karatsubaMultiply(a1,b1);
vll a2b2=karatsubaMultiply(a2,b2);
for(ll i=0;i<k;i++) a2[i]+=a1[i];
for(ll i=0;i<k;i++) b2[i]+=b1[i];
vll r=karatsubaMultiply(a2,b2);
for(ll i=0;i<(ll)a1b1.size();i++) r[i]-=a1b1[i];
for(ll i=0;i<(ll)a2b2.size();i++) r[i]-=a2b2[i];
for(ll i=0;i<(ll)r.size();i++) res[i+k]+=r[i];
for(ll i=0;i<(ll)a1b1.size();i++) res[i]+=a1b1[i];
for(ll i=0;i<(ll)a2b2.size();i++) res[i+n]+=a2b2[i];
return res;
}
bigint operator*(const bigint &v) const{
constexpr static ll nbase = 10000;
constexpr static ll nbase_digits = 4;
vll a=convert_base(this->a,base_digits,nbase_digits);
vll b=convert_base(v.a,base_digits,nbase_digits);
/*
while(a.size()<b.size()) a.push_back(0);
while(b.size()<a.size()) b.push_back(0);
while(a.size() &(a.size()-1)) a.push_back(0),b.push_back(0);
vll c=karatsubaMultiply(a,b);
*/
if(a.empty()) a.push_back(0);
if(b.empty()) b.push_back(0);
vll c=FFT::multiply(a,b);
bigint res;
res.sign=sign*v.sign;
for(ll i=0,carry=0;i<(ll)c.size();i++){
ll cur=c[i]+carry;
res.a.push_back((ll)(cur%nbase));
carry=(ll)(cur/nbase);
if(i+1==(int)c.size()&&carry>0) c.push_back(0);
}
res.a=convert_base(res.a,nbase_digits,base_digits);
res.trim();
return res;
}
};
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
bigint m;
cin >> m;
bigint a = 1;
REP(_, 128) a *= 2;
cout << a % m << endl;
return 0;
}