結果
問題 | No.978 Fibonacci Convolution Easy |
ユーザー | heno239 |
提出日時 | 2020-01-31 21:31:57 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 31 ms / 2,000 ms |
コード長 | 3,055 bytes |
コンパイル時間 | 1,288 ms |
コンパイル使用メモリ | 110,764 KB |
実行使用メモリ | 19,968 KB |
最終ジャッジ日時 | 2024-09-18 20:51:20 |
合計ジャッジ時間 | 1,965 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 11 ms
19,840 KB |
testcase_01 | AC | 19 ms
19,712 KB |
testcase_02 | AC | 15 ms
19,840 KB |
testcase_03 | AC | 29 ms
19,712 KB |
testcase_04 | AC | 16 ms
19,712 KB |
testcase_05 | AC | 12 ms
19,840 KB |
testcase_06 | AC | 18 ms
19,840 KB |
testcase_07 | AC | 24 ms
19,840 KB |
testcase_08 | AC | 20 ms
19,840 KB |
testcase_09 | AC | 26 ms
19,968 KB |
testcase_10 | AC | 30 ms
19,712 KB |
testcase_11 | AC | 17 ms
19,712 KB |
testcase_12 | AC | 14 ms
19,712 KB |
testcase_13 | AC | 19 ms
19,840 KB |
testcase_14 | AC | 14 ms
19,712 KB |
testcase_15 | AC | 20 ms
19,968 KB |
testcase_16 | AC | 31 ms
19,712 KB |
testcase_17 | AC | 31 ms
19,840 KB |
testcase_18 | AC | 13 ms
19,712 KB |
testcase_19 | AC | 13 ms
19,840 KB |
testcase_20 | AC | 12 ms
19,712 KB |
ソースコード
#include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<bitset> #include<stack> #include<unordered_map> #include<utility> #include<cassert> #include<complex> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (1e+18) + 7; typedef pair<int, int>P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef long double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-6; const ld pi = acos(-1.0); //typedef vector<vector<ll>> mat; typedef vector<int> vec; ll mod_pow(ll a, ll n) { ll res = 1; while (n) { if (n & 1)res = res * a%mod; a = a * a%mod; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n%mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, int n) { if (n == 0)return modint(1); modint res = (a*a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } //const int max_n = 1 << 22; //modint fact[max_n], factinv[max_n]; //void init_f() { // fact[0] = modint(1); // for (int i = 0; i < max_n - 1; i++) { // fact[i + 1] = fact[i] * modint(i + 1); // } // factinv[max_n - 1] = modint(1) / fact[max_n - 1]; // for (int i = max_n - 2; i >= 0; i--) { // factinv[i] = factinv[i + 1] * modint(i + 1); // } //} //modint comb(int a, int b) { // if (a < 0 || b < 0 || a < b)return 0; // return fact[a] * factinv[b] * factinv[a - b]; //} modint f[1 << 21]; void solve() { f[1] = 0; f[2] = 1; int n, p; cin >> n >> p; Rep1(i, 3, n) { f[i] = f[i - 1] * (modint)p + f[i - 2]; } modint ans = 0; rep1(i, n) { ans += f[i]; } ans *= ans; rep1(i, n)ans += f[i] * f[i]; ans = ans/(modint)2; cout << ans << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(12); //init_f(); //int t; cin >> t; rep(i, t)solve(); solve(); stop return 0; }