結果
| 問題 |
No.978 Fibonacci Convolution Easy
|
| ユーザー |
hitonanode
|
| 提出日時 | 2020-01-31 21:40:49 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 31 ms / 2,000 ms |
| コード長 | 12,844 bytes |
| コンパイル時間 | 1,650 ms |
| コンパイル使用メモリ | 171,816 KB |
| 実行使用メモリ | 18,836 KB |
| 最終ジャッジ日時 | 2024-09-18 20:52:30 |
| 合計ジャッジ時間 | 2,607 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
///// This part below is only for debug, not used /////
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
///// END /////
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/
template <int mod>
struct ModInt
{
using lint = long long;
static int get_mod() { return mod; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&](){
std::set<int> fac;
int v = mod - 1;
for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < mod; g++) {
bool ok = true;
for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; }
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val;
constexpr ModInt() : val(0) {}
constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; }
constexpr ModInt(lint v) { _setval(v % mod + mod); }
explicit operator bool() const { return val != 0; }
constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
constexpr ModInt operator-() const { return ModInt()._setval(mod - val); }
constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
constexpr bool operator==(const ModInt &x) const { return val == x.val; }
constexpr bool operator!=(const ModInt &x) const { return val != x.val; }
bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }
friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; }
constexpr lint power(lint n) const {
lint ans = 1, tmp = this->val;
while (n) {
if (n & 1) ans = ans * tmp % mod;
tmp = tmp * tmp % mod;
n /= 2;
}
return ans;
}
constexpr lint inv() const { return this->power(mod - 2); }
constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }
constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }
inline ModInt fac() const {
static std::vector<ModInt> facs;
int l0 = facs.size();
if (l0 > this->val) return facs[this->val];
facs.resize(this->val + 1);
for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i));
return facs[this->val];
}
ModInt doublefac() const {
lint k = (this->val + 1) / 2;
if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();
else return ModInt(k).fac() * ModInt(2).power(k);
}
ModInt nCr(const ModInt &r) const {
if (this->val < r.val) return ModInt(0);
return this->fac() / ((*this - r).fac() * r.fac());
}
ModInt sqrt() const {
if (val == 0) return 0;
if (mod == 2) return val;
if (power((mod - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.power((mod - 1) / 2) == 1) b += 1;
int e = 0, m = mod - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = power((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.power(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.power(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val, mod - x.val));
}
};
constexpr int MOD = 1000000007;
using mint = ModInt<MOD>;
template <typename T>
struct matrix
{
int H, W;
std::vector<T> elem;
typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
inline T &at(int i, int j) { return elem[i * W + j]; }
inline T get(int i, int j) const { return elem[i * W + j]; }
operator std::vector<std::vector<T>>() const {
std::vector<std::vector<T>> ret(H);
for (int i = 0; i < H; i++) std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));
return ret;
}
matrix(int H = 0, int W = 0) : H(H), W(W), elem(H * W) {}
matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {
for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));
}
static matrix Identity(int N) {
matrix ret(N, N);
for (int i = 0; i < N; i++) ret.at(i, i) = 1;
return ret;
}
matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; }
matrix operator+(const matrix &r) const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; }
matrix operator-(const matrix &r) const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; }
matrix operator*(const matrix &r) const {
matrix ret(H, r.W);
for (int i = 0; i < H; i++) {
for (int k = 0; k < W; k++) {
for (int j = 0; j < r.W; j++) {
ret.at(i, j) += this->get(i, k) * r.get(k, j);
}
}
}
return ret;
}
matrix &operator+=(const matrix &r) { return *this = *this + r; }
matrix &operator-=(const matrix &r) { return *this = *this - r; }
matrix &operator*=(const matrix &r) { return *this = *this * r; }
bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }
bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }
bool operator<(const matrix &r) const { return elem < r.elem; }
matrix pow(int64_t n) const {
matrix ret = Identity(H);
if (n == 0) return ret;
for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {
ret *= ret;
if ((n >> i) & 1) ret *= (*this);
}
return ret;
}
matrix transpose() const {
matrix ret(W, H);
for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);
return ret;
}
// Gauss-Jordan elimination
// - Require inverse for every non-zero element
// - Complexity: O(H^2 W)
matrix gauss_jordan() const {
int c = 0;
matrix mtr(*this);
for (int h = 0; h < H; h++) {
if (c == W) break;
int piv = -1;
for (int j = h; j < H; j++) if (mtr.get(j, c)) {
piv = j;
break;
}
if (piv == -1) { c++; h--; continue; }
if (h != piv) {
for (int w = 0; w < W; w++) {
std::swap(mtr[piv][w], mtr[h][w]);
mtr.at(piv, w) *= -1; // To preserve sign of determinant
}
}
for (int hh = 0; hh < H; hh++) if (hh != h) {
T coeff = mtr.at(hh, c) * mtr.at(h, c).inv();
for (int w = W - 1; w >= c; w--) {
mtr.at(hh, w) -= mtr.at(h, w) * coeff;
}
}
c++;
}
return mtr;
}
int rank_of_gauss_jordan() const {
for (int i = H * W - 1; i >= 0; i--) if (elem[i]) return i / W + 1;
return 0;
}
T determinant_of_upper_triangle() const {
T ret = 1;
for (int i = 0; i < H; i++) ret *= get(i, i);
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const matrix &x) {
os << "[(" << x.H << " * " << x.W << " matrix)";
for (int i = 0; i < x.H; i++) {
os << "\n[";
for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";
os << "]";
}
os << "]\n";
return os;
}
friend std::istream &operator>>(std::istream &is, matrix &x) {
for (auto &v : x.elem) is >> v;
return is;
}
};
int main()
{
int N, P;
cin >> N >> P;
vector<mint> A(N + 10);
A[2] = 1;
FOR(i, 3, N + 1) A[i] = A[i - 1] * P + A[i - 2];
vector<mint> AA = A;
REP(i, N + 1) AA[i + 1] += AA[i];
mint ret = 0;
FOR(i, 1, N + 1) ret += A[i] * AA[i];
cout << ret << endl;
}
hitonanode