結果
問題 | No.978 Fibonacci Convolution Easy |
ユーザー | ミドリムシ |
提出日時 | 2020-01-31 21:53:14 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 18 ms / 2,000 ms |
コード長 | 3,423 bytes |
コンパイル時間 | 1,328 ms |
コンパイル使用メモリ | 170,284 KB |
実行使用メモリ | 19,072 KB |
最終ジャッジ日時 | 2024-09-18 20:56:01 |
合計ジャッジ時間 | 2,097 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 8 ms
9,612 KB |
testcase_02 | AC | 5 ms
6,528 KB |
testcase_03 | AC | 17 ms
18,404 KB |
testcase_04 | AC | 6 ms
7,240 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 7 ms
8,704 KB |
testcase_07 | AC | 13 ms
13,124 KB |
testcase_08 | AC | 9 ms
10,112 KB |
testcase_09 | AC | 13 ms
14,600 KB |
testcase_10 | AC | 17 ms
19,072 KB |
testcase_11 | AC | 6 ms
7,868 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 6 ms
8,576 KB |
testcase_14 | AC | 4 ms
5,376 KB |
testcase_15 | AC | 8 ms
9,344 KB |
testcase_16 | AC | 17 ms
19,072 KB |
testcase_17 | AC | 18 ms
18,944 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; const lint mod = 1e9 + 7; #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountll((lint)(n)) #define fcout cout << fixed << setprecision(15) #define highest(x) (63 - __builtin_clzll(x)) #define rep(i, n) for(int i = 0; i < n; i++) const int inf9 = 1e9; const lint inf18 = 1e18; template<class T> inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; } template<class T> inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } template<class T = string, class U = char>int character_count(T text, U character){ int ans = 0; for(U i: text){ ans += (i == character); } return ans; } lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ double y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } double euclidean(double first, double second){ return sqrt(first * first + second * second); } template<class T, class U> string to_string(pair<T, U> x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; } template<class itr> void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) ans += to_string(*i) + " "; if(!ans.empty()) ans.pop_back(); cout << ans << endl; } template<class itr> void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } } template<class T> T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template<class T> T lcm(T a, T b){ return a / gcd(a, b) * b; } struct combination{ vector<lint> fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint P(int n, int r){ if(r < 0 || n < r) return 0; return (fact[n] * inv[n - r] % mod); } lint C(int p, int q){ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } }; template<class itr> bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; } template<class itr, class itr2> bool next_sequence2(itr first, itr last, itr2 first2, itr2 last2){ itr now = last; itr2 now2 = last2; while(now != first){ now--, now2--; (*now)++; if((*now) == (*now2)){ (*now) = 0; }else{ return true; } } return false; } inline int at(lint i, int j){ return (i >> j) & 1; } int main(){ lint N, p; cin >> N >> p; lint a[N + 1]; a[1] = 0, a[2] = 1; for(int i = 3; i <= N; i++){ a[i] = (a[i - 1] * p + a[i - 2]) % mod; } lint sum = 0, overlap = 0; for(int i = 1; i <= N; i++){ sum += a[i]; overlap += a[i] * a[i] % mod; } sum %= mod; overlap %= mod; sum = (sum * sum) % mod; cout << (sum + overlap) % mod * power(2, mod - 2, mod) % mod << endl; }