結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | ei1333333 |
提出日時 | 2020-01-31 21:57:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,650 ms / 2,000 ms |
コード長 | 7,784 bytes |
コンパイル時間 | 3,189 ms |
コンパイル使用メモリ | 234,500 KB |
実行使用メモリ | 205,436 KB |
最終ジャッジ日時 | 2024-09-17 11:30:10 |
合計ジャッジ時間 | 33,584 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,556 ms
205,256 KB |
testcase_01 | AC | 1,487 ms
205,268 KB |
testcase_02 | AC | 1,462 ms
205,284 KB |
testcase_03 | AC | 1,509 ms
205,380 KB |
testcase_04 | AC | 1,560 ms
205,432 KB |
testcase_05 | AC | 1,527 ms
205,352 KB |
testcase_06 | AC | 1,495 ms
205,256 KB |
testcase_07 | AC | 1,588 ms
205,260 KB |
testcase_08 | AC | 1,578 ms
205,436 KB |
testcase_09 | AC | 1,579 ms
205,324 KB |
testcase_10 | AC | 1,650 ms
205,392 KB |
testcase_11 | AC | 1,623 ms
205,256 KB |
testcase_12 | AC | 1,544 ms
205,260 KB |
testcase_13 | AC | 1,566 ms
205,256 KB |
testcase_14 | AC | 1,520 ms
205,260 KB |
testcase_15 | AC | 1,488 ms
205,284 KB |
testcase_16 | AC | 1,561 ms
205,332 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using int64 = long long; const int mod = 1e9 + 7; //const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } static constexpr uint32_t mul_inv(uint32_t n, int e = 5, uint32_t x = 1) { return e == 0 ? x : mul_inv(n, e - 1, x * (2 - x * n)); } template< uint32_t mod > struct ModInt { using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 inv = mul_inv(mod); static constexpr u32 r2 = -u64(mod) % mod; u32 x; ModInt() : x(0) {} ModInt(const u32 &x) : x(reduce(u64(x) * r2)) {} u32 reduce(const u64 &w) const { return u32(w >> 32) + mod - u32((u64(u32(w) * inv) * mod) >> 32); } ModInt &operator+=(const ModInt &p) { if(int(x += p.x - 2 * mod) < 0) x += 2 * mod; return *this; } ModInt &operator-=(const ModInt &p) { if(int(x -= p.x) < 0) x += 2 * mod; return *this; } ModInt &operator*=(const ModInt &p) { x = reduce(uint64_t(x) * p.x); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return get() == p.get(); } bool operator!=(const ModInt &p) const { return get() != p.get(); } int get() const { return reduce(x) % mod; } ModInt pow(int64_t n) const { ModInt ret(1), mul(*this); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } ModInt inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.get(); } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; template< typename Mint > struct NumberTheoreticTransformFriendlyModInt { vector< int > rev; vector< Mint > rts; int base, max_base; Mint root; NumberTheoreticTransformFriendlyModInt() : base(1), rev{0, 1}, rts{0, 1} { const auto mod = Mint::get_mod(); assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(root.pow((mod - 1) >> 1) == 1) root += 1; assert(root.pow(mod - 1) == 1); root = root.pow((mod - 1) >> max_base); } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { Mint z = root.pow(1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = rts[i] * z; } ++base; } } void ntt(vector< Mint > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { Mint z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } void intt(vector< Mint > &a) { const int n = (int) a.size(); ntt(a); reverse(a.begin() + 1, a.end()); Mint inv_sz = Mint(1) / n; for(int i = 0; i < n; i++) a[i] *= inv_sz; } vector< Mint > multiply(vector< Mint > a) { int need = a.size() + a.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); ntt(a); Mint inv_sz = Mint(1) / sz; for(int i = 0; i < sz; i++) { a[i] *= a[i] * inv_sz; } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; // http://math314.hateblo.jp/entry/2015/05/07/014908 inline int add(unsigned x, int y, int mod) { x += y; if(x >= mod) x -= mod; return (x); } template< int mod > vector< int > AnyModNTTMultiply(vector< int > &a) { using mint = ModInt< mod >; using mint1 = ModInt< 167772161 >; using mint2 = ModInt< 469762049 >; using mint3 = ModInt< 595591169 >; NumberTheoreticTransformFriendlyModInt< mint1 > ntt1; NumberTheoreticTransformFriendlyModInt< mint2 > ntt2; NumberTheoreticTransformFriendlyModInt< mint3 > ntt3; vector< mint1 > a1(begin(a), end(a)); vector< mint2 > a2(begin(a), end(a)); vector< mint3 > a3(begin(a), end(a)); auto x = ntt1.multiply(a1); auto y = ntt2.multiply(a2); auto z = ntt3.multiply(a3); const int m1 = 167772161, m2 = 469762049, m3 = 595591169; const auto m1_inv_m2 = mint2(m1).inverse().get(); const auto m12_inv_m3 = (mint3(m1) * m2).inverse().get(); const auto m12_mod = (mint(m1) * m2).get(); vector< int > ret(x.size()); for(int i = 0; i < x.size(); i++) { auto v1 = ((mint2(y[i]) + m2 - x[i].get()) * m1_inv_m2).get(); auto v2 = ((z[i] + m3 - x[i].get() - mint3(m1) * v1) * m12_inv_m3).get(); ret[i] = (mint(x[i].get()) + mint(m1) * v1 + mint(m12_mod) * v2).get(); } return ret; } int main() { int P; cin >> P; vector< int > S(2000000); S[1] = 0; S[2] = 1; for(int i = 3; i < 2000000; i++) { S[i] = (1LL * S[i - 1] * P + S[i - 2]) % mod; } S = AnyModNTTMultiply< mod >(S); int Q; cin >> Q; while(Q--) { int64 q; cin >> q; cout << S[q] << "\n"; } }