結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| ユーザー |
ei1333333
|
| 提出日時 | 2020-01-31 21:57:46 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,794 ms / 2,000 ms |
| コード長 | 7,784 bytes |
| コンパイル時間 | 3,098 ms |
| コンパイル使用メモリ | 225,612 KB |
| 最終ジャッジ日時 | 2025-01-08 21:05:59 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
//const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
static constexpr uint32_t mul_inv(uint32_t n, int e = 5, uint32_t x = 1) {
return e == 0 ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
template< uint32_t mod >
struct ModInt {
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 inv = mul_inv(mod);
static constexpr u32 r2 = -u64(mod) % mod;
u32 x;
ModInt() : x(0) {}
ModInt(const u32 &x) : x(reduce(u64(x) * r2)) {}
u32 reduce(const u64 &w) const {
return u32(w >> 32) + mod - u32((u64(u32(w) * inv) * mod) >> 32);
}
ModInt &operator+=(const ModInt &p) {
if(int(x += p.x - 2 * mod) < 0) x += 2 * mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if(int(x -= p.x) < 0) x += 2 * mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = reduce(uint64_t(x) * p.x);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return get() == p.get(); }
bool operator!=(const ModInt &p) const { return get() != p.get(); }
int get() const { return reduce(x) % mod; }
ModInt pow(int64_t n) const {
ModInt ret(1), mul(*this);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt inverse() const {
return pow(mod - 2);
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.get();
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
vector< int > rev;
vector< Mint > rts;
int base, max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() : base(1), rev{0, 1}, rts{0, 1} {
const auto mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(root.pow((mod - 1) >> 1) == 1) root += 1;
assert(root.pow(mod - 1) == 1);
root = root.pow((mod - 1) >> max_base);
}
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while(base < nbase) {
Mint z = root.pow(1 << (max_base - 1 - base));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = rts[i] * z;
}
++base;
}
}
void ntt(vector< Mint > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
Mint z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
void intt(vector< Mint > &a) {
const int n = (int) a.size();
ntt(a);
reverse(a.begin() + 1, a.end());
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
vector< Mint > multiply(vector< Mint > a) {
int need = a.size() + a.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
ntt(a);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) {
a[i] *= a[i] * inv_sz;
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
// http://math314.hateblo.jp/entry/2015/05/07/014908
inline int add(unsigned x, int y, int mod) {
x += y;
if(x >= mod) x -= mod;
return (x);
}
template< int mod >
vector< int > AnyModNTTMultiply(vector< int > &a) {
using mint = ModInt< mod >;
using mint1 = ModInt< 167772161 >;
using mint2 = ModInt< 469762049 >;
using mint3 = ModInt< 595591169 >;
NumberTheoreticTransformFriendlyModInt< mint1 > ntt1;
NumberTheoreticTransformFriendlyModInt< mint2 > ntt2;
NumberTheoreticTransformFriendlyModInt< mint3 > ntt3;
vector< mint1 > a1(begin(a), end(a));
vector< mint2 > a2(begin(a), end(a));
vector< mint3 > a3(begin(a), end(a));
auto x = ntt1.multiply(a1);
auto y = ntt2.multiply(a2);
auto z = ntt3.multiply(a3);
const int m1 = 167772161, m2 = 469762049, m3 = 595591169;
const auto m1_inv_m2 = mint2(m1).inverse().get();
const auto m12_inv_m3 = (mint3(m1) * m2).inverse().get();
const auto m12_mod = (mint(m1) * m2).get();
vector< int > ret(x.size());
for(int i = 0; i < x.size(); i++) {
auto v1 = ((mint2(y[i]) + m2 - x[i].get()) * m1_inv_m2).get();
auto v2 = ((z[i] + m3 - x[i].get() - mint3(m1) * v1) * m12_inv_m3).get();
ret[i] = (mint(x[i].get()) + mint(m1) * v1 + mint(m12_mod) * v2).get();
}
return ret;
}
int main() {
int P;
cin >> P;
vector< int > S(2000000);
S[1] = 0;
S[2] = 1;
for(int i = 3; i < 2000000; i++) {
S[i] = (1LL * S[i - 1] * P + S[i - 2]) % mod;
}
S = AnyModNTTMultiply< mod >(S);
int Q;
cin >> Q;
while(Q--) {
int64 q;
cin >> q;
cout << S[q] << "\n";
}
}
ei1333333