結果

問題 No.980 Fibonacci Convolution Hard
ユーザー kyort0nkyort0n
提出日時 2020-01-31 22:07:10
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 5,203 bytes
コンパイル時間 2,091 ms
コンパイル使用メモリ 183,836 KB
実行使用メモリ 145,704 KB
最終ジャッジ日時 2024-09-17 08:24:17
合計ジャッジ時間 9,087 ms
ジャッジサーバーID
(参考情報)
judge1 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> l_l;
typedef pair<int, int> i_i;
template<class T>
inline bool chmax(T &a, T b) {
    if(a < b) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
inline bool chmin(T &a, T b) {
    if(a > b) {
        a = b;
        return true;
    }
    return false;
}


typedef long long ll;
typedef pair<int, int> Pii;

#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)

template<class T> T extgcd(T a, T b, T& x, T& y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b -= q * a, a); } return b; }
template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }
ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }

template<int mod, int primitive_root>
class NTT {
public:
	int get_mod() const { return mod; }
	void _ntt(vector<ll>& a, int sign) {
		const int n = sz(a);
		assert((n ^ (n&-n)) == 0); //n = 2^k

		const int g = 3; //g is primitive root of mod
		int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1
		if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod

		//bit reverse
		int i = 0;
		for (int j = 1; j < n - 1; ++j) {
			for (int k = n >> 1; k >(i ^= k); k >>= 1);
			if (j < i) swap(a[i], a[j]);
		}

		for (int m = 1; m < n; m *= 2) {
			const int m2 = 2 * m;
			const ll base = mod_pow(h, n / m2, mod);
			ll w = 1;
			FOR(x, m) {
				for (int s = x; s < n; s += m2) {
					ll u = a[s];
					ll d = a[s + m] * w % mod;
					a[s] = u + d;
					if (a[s] >= mod) a[s] -= mod;
					a[s + m] = u - d;
					if (a[s + m] < 0) a[s + m] += mod;
				}
				w = w * base % mod;
			}
		}

		for (auto& x : a) if (x < 0) x += mod;
	}
	void ntt(vector<ll>& input) {
		_ntt(input, 1);
	}
	void intt(vector<ll>& input) {
		_ntt(input, -1);
		const int n_inv = mod_inv(sz(input), mod);
		for (auto& x : input) x = x * n_inv % mod;
	}

	// 畳み込み演算を行う
	vector<ll> convolution(const vector<ll>& a, const vector<ll>& b){
		int ntt_size = 1;
		while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;

		vector<ll> _a = a, _b = b;
		_a.resize(ntt_size); _b.resize(ntt_size);

		ntt(_a);
		ntt(_b);

		FOR(i, ntt_size){
			(_a[i] *= _b[i]) %= mod;
		}

		intt(_a);
		return _a;
	}
};

ll garner(vector<Pii> mr, int mod){
	mr.emplace_back(mod, 0);

	vector<ll> coffs(sz(mr), 1);
	vector<ll> constants(sz(mr), 0);
	FOR(i, sz(mr) - 1){
		// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first) を解く
		ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;
		if (v < 0) v += mr[i].first;

		for (int j = i + 1; j < sz(mr); j++) {
			(constants[j] += coffs[j] * v) %= mr[j].first;
			(coffs[j] *= mr[i].first) %= mr[j].first;
		}
	}

	return constants[sz(mr) - 1];
}

typedef NTT<167772161, 3> NTT_1;
typedef NTT<469762049, 3> NTT_2;
typedef NTT<1224736769, 3> NTT_3;

//任意のmodで畳み込み演算 O(n log n)
vector<ll> int32mod_convolution(vector<ll> a, vector<ll> b,int mod){
	for (auto& x : a) x %= mod;
	for (auto& x : b) x %= mod;
	NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
	auto x = ntt1.convolution(a, b);
	auto y = ntt2.convolution(a, b);
	auto z = ntt3.convolution(a, b);

	vector<ll> ret(sz(x));
	vector<Pii> mr(3);
	FOR(i, sz(x)){
		mr[0].first = ntt1.get_mod(), mr[0].second = (int)x[i];
		mr[1].first = ntt2.get_mod(), mr[1].second = (int)y[i];
		mr[2].first = ntt3.get_mod(), mr[2].second = (int)z[i];
		ret[i] = garner(mr, mod);
	}

	return ret;
}

// garnerのアルゴリズムを直書きしたversion,速い
vector<ll> fast_int32mod_convolution(vector<ll> a, vector<ll> b,int mod){
	for (auto& x : a) x %= mod;
	for (auto& x : b) x %= mod;
	
	NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
	assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());
	auto x = ntt1.convolution(a, b);
	auto y = ntt2.convolution(a, b);
	auto z = ntt3.convolution(a, b);

	// garnerのアルゴリズムを極力高速化した
	const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();
	const ll m1_inv_m2 = mod_inv<ll>(m1, m2);
	const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);
	const ll m12_mod = m1 * m2 % mod;
	vector<ll> ret(sz(x));
	FOR(i, sz(x)){
		ll v1 = (y[i] - x[i]) *  m1_inv_m2 % m2;
		if (v1 < 0) v1 += m2;
		ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;
		if (v2 < 0) v2 += m3;
		ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;
		if (constants3 < 0) constants3 += mod;
		ret[i] = constants3;
	}

	return ret;
}
vector<ll> v;
ll p;
const ll mod = 1000000007;

int main() {
    //cout.precision(10);
    cin.tie(0);
    ios::sync_with_stdio(false);
    cin >> p;
    v.push_back(0);
    v.push_back(1);
    for(int i = 2; i <= 2e6; i++) {
      //cerr << i << endl;
      auto a = v[i-2];
      auto b = v[i-1];
      v.push_back((p * b + a) % mod);
    }
    auto c = int32mod_convolution(v, v, mod);
    int Q;
    cin >> Q;
    while(Q--) {
      //cerr << Q << endl;
      int q;
      cin >> q;
      cout << c[q-2] << endl;
    }
    return 0;
}
0