結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| コンテスト | |
| ユーザー |
kei
|
| 提出日時 | 2020-01-31 22:11:37 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,467 bytes |
| コンパイル時間 | 1,785 ms |
| コンパイル使用メモリ | 182,284 KB |
| 実行使用メモリ | 150,080 KB |
| 最終ジャッジ日時 | 2024-09-17 08:30:07 |
| 合計ジャッジ時間 | 42,766 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 17 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T>& V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> >& Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T>& mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }
template<typename T>vector<T> make_v(size_t a){return vector<T>(a);}
template<typename T,typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));}
template<typename T,typename V> typename enable_if<is_class<T>::value==0>::type fill_v(T &t,const V &v){t=v;}
template<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type fill_v(T &t,const V &v){for(auto &e:t) fill_v(e,v);}
/*
<url:>
問題文============================================================
=================================================================
解説=============================================================
================================================================
*/
// https://satanic0258.github.io/snippets/math/NTT.html
// Description: 整数列a[i],b[i]から列c[k]=sum{a[i]*b[k-i]}を生成する.任意modに対応.O(NlogN).
namespace NTT {
std::vector<int> tmp;
size_t sz = 1;
inline int powMod(int n, int p, int m) {
int res = 1;
while (p) {
if (p & 1) res = (ll)res * n % m;
n = (ll)n * n % m;
p >>= 1;
}
return (int)res;
}
inline int invMod(int n, int m) {
return powMod(n, m - 2, m);
}
template <int Mod, int PrimitiveRoot>
struct NTTPart {
static std::vector<int> ntt(std::vector<int> a, bool inv = false) {
size_t mask = sz - 1;
size_t p = 0;
for (size_t i = sz >> 1; i >= 1; i >>= 1) {
auto& cur = (p & 1) ? tmp : a;
auto& nex = (p & 1) ? a : tmp;
int e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);
if (inv) e = invMod(e, Mod);
int w = 1;
for (size_t j = 0; j < sz; j += i) {
for (size_t k = 0; k < i; ++k) {
nex[j + k] = (cur[((j << 1) & mask) + k] + (ll)w * cur[(((j << 1) + i) & mask) + k]) % Mod;
}
w = (ll)w * e % Mod;
}
++p;
}
if (p & 1) std::swap(a, tmp);
if (inv) {
int invSz = invMod(sz, Mod);
for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * invSz % Mod;
}
return a;
}
static std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
a = ntt(a);
b = ntt(b);
for (size_t i = 0; i < sz; ++i) a[i] = (ll)a[i] * b[i] % Mod;
a = ntt(a, true);
return a;
}
};
constexpr int M[] = {1224736769, 469762049, 167772161};
constexpr int PR[] = {3, 3, 3};
constexpr int NTT_CONVOLUTION_TIME = 3;
/*
X := max(a)*max(b)*min(|a|, |b|) のとき,
NTT_CONVOLUTION_TIME <- 1: X < 1224736769 = 1.2*10^ 9 ~ 2^30
NTT_CONVOLUTION_TIME <- 2: X < 575334854091079681 = 5.8*10^17 ~ 2^59
NTT_CONVOLUTION_TIME <- 3: X < 2^86 (32bit * 32bit * 10^7くらいまで)
*/
inline void garner(std::vector<int> *c, int mod) {
if (NTT_CONVOLUTION_TIME == 1) {
for(auto& x : c[0]) x %= mod;
}
else if (NTT_CONVOLUTION_TIME == 2) {
const int r01 = invMod(M[0], M[1]);
for (size_t i = 0; i < sz; ++i) {
c[1][i] = (c[1][i] - c[0][i]) * (ll)r01 % M[1];
if (c[1][i] < 0) c[1][i] += M[1];
c[0][i] = (c[0][i] + (ll)c[1][i] * M[0]) % mod;
}
}
else if (NTT_CONVOLUTION_TIME == 3) {
const int R01 = invMod(M[0], M[1]);
const int R02 = invMod(M[0], M[2]);
const int R12 = invMod(M[1], M[2]);
const int M01 = (ll)M[0] * M[1] % mod;
for (size_t i = 0; i < sz; ++i) {
c[1][i] = (c[1][i] - c[0][i]) * (ll)R01 % M[1];
if (c[1][i] < 0) c[1][i] += M[1];
c[2][i] = ((c[2][i] - c[0][i]) * (ll)R02 % M[2] - c[1][i]) * R12 % M[2];
if (c[2][i] < 0) c[2][i] += M[2];
c[0][i] = (c[0][i] + (ll)c[1][i] * M[0] + (ll)c[2][i] * M01) % mod;
}
}
}
std::vector<int> mul(std::vector<int> a, std::vector<int> b, int mod) {
for (auto& x : a) x %= mod;
for (auto& x : b) x %= mod;
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
std::vector<int> c[NTT_CONVOLUTION_TIME];
if (NTT_CONVOLUTION_TIME >= 1) c[0] = NTTPart<M[0], PR[0]>::mul(a, b);
if (NTT_CONVOLUTION_TIME >= 2) c[1] = NTTPart<M[1], PR[1]>::mul(a, b);
if (NTT_CONVOLUTION_TIME >= 3) c[2] = NTTPart<M[2], PR[2]>::mul(a, b);
for (auto& v : c) v.resize(m);
garner(c, mod);
return c[0];
}
}; // !!! CHECK NTT_CONVOLUTION_TIME !!!
constexpr ll MOD = 1000000007;
constexpr int MAXN = 2000001;
template<class Type>
Type solve(Type res = Type()){
ll p; cin >> p;
ll Q; cin >> Q;
vector<int> a(MAXN);
a[1] = 0; a[2] = 1;
for(int i = 3; i < MAXN;i++){
a[i] = p*a[i-1]%MOD + a[i-2];
a[i] %= MOD;
}
auto b = a;
vector<int> c(NTT::mul(a,b,MOD));
while(Q--){
ll q; cin >> q;
cout << c[q] << endl;
}
return res;
}
int main(void) {
cin.tie(0); ios::sync_with_stdio(false);
solve<ll>(0);
// cout << fixed << setprecision(12) << solve<ll>() << endl;
return 0;
}
kei