結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| ユーザー |
emthrm
|
| 提出日時 | 2020-01-31 22:14:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 8,066 bytes |
| コンパイル時間 | 2,086 ms |
| コンパイル使用メモリ | 202,948 KB |
| 最終ジャッジ日時 | 2025-01-08 21:12:31 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 17 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }
struct IOSetup {
IOSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} iosetup;
int mod = MOD;
struct ModInt {
unsigned val;
ModInt(): val(0) {}
ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {}
ModInt pow(ll exponent) {
ModInt tmp = *this, res = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; }
ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; }
ModInt &operator*=(const ModInt &x) { val = static_cast<unsigned long long>(val) * x.val % mod; return *this; }
ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); }
bool operator==(const ModInt &x) const { return val == x.val; }
bool operator!=(const ModInt &x) const { return val != x.val; }
bool operator<(const ModInt &x) const { return val < x.val; }
bool operator<=(const ModInt &x) const { return val <= x.val; }
bool operator>(const ModInt &x) const { return val > x.val; }
bool operator>=(const ModInt &x) const { return val >= x.val; }
ModInt &operator++() { if (++val == mod) val = 0; return *this; }
ModInt operator++(int) { ModInt res = *this; ++*this; return res; }
ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; }
ModInt operator--(int) { ModInt res = *this; --*this; return res; }
ModInt operator+() const { return *this; }
ModInt operator-() const { return ModInt(val ? mod - val : 0); }
ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; }
friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; }
friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; }
private:
ModInt inv() const {
// assert(__gcd(val, mod) == 1);
unsigned a = val, b = mod; int x = 1, y = 0;
while (b) {
unsigned tmp = a / b;
swap(a -= tmp * b, b);
swap(x -= tmp * y, y);
}
return ModInt(x);
}
};
ModInt abs(const ModInt &x) { return x; }
struct Combinatorics {
int val; // "val!" and "mod" must be disjoint.
vector<ModInt> fact, fact_inv, inv;
Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {
fact[0] = 1;
FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i;
fact_inv[val] = ModInt(1) / fact[val];
for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;
FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i];
}
ModInt nCk(int n, int k) {
if (n < 0 || n < k || k < 0) return ModInt(0);
// assert(n <= val && k <= val);
return fact[n] * fact_inv[k] * fact_inv[n - k];
}
ModInt nPk(int n, int k) {
if (n < 0 || n < k || k < 0) return ModInt(0);
// assert(n <= val);
return fact[n] * fact_inv[n - k];
}
ModInt nHk(int n, int k) {
if (n < 0 || k < 0) return ModInt(0);
return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));
}
};
// https://ei1333.github.io/algorithm/fft.html
struct NumberTheoreticTransform
{
int mod;
int primitiveroot;
NumberTheoreticTransform(int mod, int root) : mod(mod), primitiveroot(root) {}
inline int mod_pow(int x, int n)
{
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x)
{
return (mod_pow(x, mod - 2));
}
inline int add(unsigned x, int y)
{
x += y;
if(x >= mod) x -= mod;
return (x);
}
inline int mul(int a, int b)
{
unsigned long long x = (long long) a * b;
unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));
return (m);
}
void DiscreteFourierTransform(vector< int > &F, bool rev)
{
const int N = (int) F.size();
for(int i = 0, j = 1; j + 1 < N; j++) {
for(int k = N >> 1; k > (i ^= k); k >>= 1);
if(i > j) swap(F[i], F[j]);
}
int w, wn, s, t;
for(int i = 1; i < N; i <<= 1) {
w = mod_pow(primitiveroot, (mod - 1) / (i * 2));
if(rev) w = inverse(w);
for(int k = 0; k < i; k++) {
wn = mod_pow(w, k);
for(int j = 0; j < N; j += i * 2) {
s = F[j + k], t = mul(F[j + k + i], wn);
F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);
}
}
}
if(rev) {
int temp = inverse(N);
for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);
}
}
vector< int > Multiply(const vector< int > &A, const vector< int > &B)
{
int sz = 1;
while(sz < A.size() + B.size() - 1) sz <<= 1;
vector< int > F(sz), G(sz);
for(int i = 0; i < A.size(); i++) F[i] = A[i];
for(int i = 0; i < B.size(); i++) G[i] = B[i];
DiscreteFourierTransform(F, false);
DiscreteFourierTransform(G, false);
for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);
DiscreteFourierTransform(F, true);
F.resize(A.size() + B.size() - 1);
return (F);
}
};
inline int add(unsigned x, int y, int mod)
{
x += y;
if(x >= mod) x -= mod;
return (x);
}
inline int mul(int a, int b, int mod)
{
unsigned long long x = (long long) a * b;
unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));
return (m);
}
inline int mod_pow(int x, int n, int mod)
{
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x, mod);
x = mul(x, x, mod);
n >>= 1;
}
return ret;
}
inline int inverse(int x, int mod)
{
return (mod_pow(x, mod - 2, mod));
}
vector< int > AnyModNTTMultiply(vector< int >& a, vector< int >& b, int mod)
{
for(auto &x : a) x %= mod;
for(auto &x : b) x %= mod;
NumberTheoreticTransform ntt1(167772161, 3);
NumberTheoreticTransform ntt2(469762049, 3);
NumberTheoreticTransform ntt3(1224736769, 3);
auto x = ntt1.Multiply(a, b);
auto y = ntt2.Multiply(a, b);
auto z = ntt3.Multiply(a, b);
const int m1 = ntt1.mod, m2 = ntt2.mod, m3 = ntt3.mod;
const int m1_inv_m2 = inverse(m1, m2);
const int m12_inv_m3 = inverse(mul(m1, m2, m3), m3);
const int m12_mod = mul(m1, m2, mod);
vector< int > ret(x.size());
for(int i = 0; i < x.size(); i++) {
int v1 = mul(add(y[i], m2 - x[i], m2), m1_inv_m2, m2);
int v2 = mul(add(z[i], m3 - add(x[i], mul(m1, v1, m3), m3), m3), m12_inv_m3, m3);
ret[i] = add(x[i], add(mul(m1, v1, mod), mul(m12_mod, v2, mod), mod), mod);
}
return ret;
}
int main() {
const int N = 2000000;
int p; cin >> p;
vector<ModInt> a(N + 1, 0);
a[2] = 1;
FOR(i, 3, N + 1) a[i] = a[i - 1] * p + a[i - 2];
vector<int> A(N + 1), B(N + 1);
REP(i, N + 1) A[i] = B[i] = a[i].val;
vector<int> ans = AnyModNTTMultiply(A, B, 1000000007);
int q; cin >> q;
while (q--) {
int q; cin >> q;
cout << ans[q] << '\n';
}
return 0;
}
emthrm