結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | 👑 emthrm |
提出日時 | 2020-01-31 22:14:21 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,066 bytes |
コンパイル時間 | 2,221 ms |
コンパイル使用メモリ | 208,652 KB |
実行使用メモリ | 70,144 KB |
最終ジャッジ日時 | 2024-09-17 08:34:17 |
合計ジャッジ時間 | 9,209 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; int mod = MOD; struct ModInt { unsigned val; ModInt(): val(0) {} ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {} ModInt pow(ll exponent) { ModInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; } ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; } ModInt &operator*=(const ModInt &x) { val = static_cast<unsigned long long>(val) * x.val % mod; return *this; } ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); } bool operator==(const ModInt &x) const { return val == x.val; } bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } bool operator<=(const ModInt &x) const { return val <= x.val; } bool operator>(const ModInt &x) const { return val > x.val; } bool operator>=(const ModInt &x) const { return val >= x.val; } ModInt &operator++() { if (++val == mod) val = 0; return *this; } ModInt operator++(int) { ModInt res = *this; ++*this; return res; } ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; } ModInt operator--(int) { ModInt res = *this; --*this; return res; } ModInt operator+() const { return *this; } ModInt operator-() const { return ModInt(val ? mod - val : 0); } ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; } ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; } ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; } ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; } friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; } friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; } private: ModInt inv() const { // assert(__gcd(val, mod) == 1); unsigned a = val, b = mod; int x = 1, y = 0; while (b) { unsigned tmp = a / b; swap(a -= tmp * b, b); swap(x -= tmp * y, y); } return ModInt(x); } }; ModInt abs(const ModInt &x) { return x; } struct Combinatorics { int val; // "val!" and "mod" must be disjoint. vector<ModInt> fact, fact_inv, inv; Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) { fact[0] = 1; FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i; fact_inv[val] = ModInt(1) / fact[val]; for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i]; } ModInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return ModInt(0); // assert(n <= val && k <= val); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) { if (n < 0 || n < k || k < 0) return ModInt(0); // assert(n <= val); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) { if (n < 0 || k < 0) return ModInt(0); return (k == 0 ? ModInt(1) : nCk(n + k - 1, k)); } }; // https://ei1333.github.io/algorithm/fft.html struct NumberTheoreticTransform { int mod; int primitiveroot; NumberTheoreticTransform(int mod, int root) : mod(mod), primitiveroot(root) {} inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return (mod_pow(x, mod - 2)); } inline int add(unsigned x, int y) { x += y; if(x >= mod) x -= mod; return (x); } inline int mul(int a, int b) { unsigned long long x = (long long) a * b; unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m; asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod)); return (m); } void DiscreteFourierTransform(vector< int > &F, bool rev) { const int N = (int) F.size(); for(int i = 0, j = 1; j + 1 < N; j++) { for(int k = N >> 1; k > (i ^= k); k >>= 1); if(i > j) swap(F[i], F[j]); } int w, wn, s, t; for(int i = 1; i < N; i <<= 1) { w = mod_pow(primitiveroot, (mod - 1) / (i * 2)); if(rev) w = inverse(w); for(int k = 0; k < i; k++) { wn = mod_pow(w, k); for(int j = 0; j < N; j += i * 2) { s = F[j + k], t = mul(F[j + k + i], wn); F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t); } } } if(rev) { int temp = inverse(N); for(int i = 0; i < N; i++) F[i] = mul(F[i], temp); } } vector< int > Multiply(const vector< int > &A, const vector< int > &B) { int sz = 1; while(sz < A.size() + B.size() - 1) sz <<= 1; vector< int > F(sz), G(sz); for(int i = 0; i < A.size(); i++) F[i] = A[i]; for(int i = 0; i < B.size(); i++) G[i] = B[i]; DiscreteFourierTransform(F, false); DiscreteFourierTransform(G, false); for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]); DiscreteFourierTransform(F, true); F.resize(A.size() + B.size() - 1); return (F); } }; inline int add(unsigned x, int y, int mod) { x += y; if(x >= mod) x -= mod; return (x); } inline int mul(int a, int b, int mod) { unsigned long long x = (long long) a * b; unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m; asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod)); return (m); } inline int mod_pow(int x, int n, int mod) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x, mod); x = mul(x, x, mod); n >>= 1; } return ret; } inline int inverse(int x, int mod) { return (mod_pow(x, mod - 2, mod)); } vector< int > AnyModNTTMultiply(vector< int >& a, vector< int >& b, int mod) { for(auto &x : a) x %= mod; for(auto &x : b) x %= mod; NumberTheoreticTransform ntt1(167772161, 3); NumberTheoreticTransform ntt2(469762049, 3); NumberTheoreticTransform ntt3(1224736769, 3); auto x = ntt1.Multiply(a, b); auto y = ntt2.Multiply(a, b); auto z = ntt3.Multiply(a, b); const int m1 = ntt1.mod, m2 = ntt2.mod, m3 = ntt3.mod; const int m1_inv_m2 = inverse(m1, m2); const int m12_inv_m3 = inverse(mul(m1, m2, m3), m3); const int m12_mod = mul(m1, m2, mod); vector< int > ret(x.size()); for(int i = 0; i < x.size(); i++) { int v1 = mul(add(y[i], m2 - x[i], m2), m1_inv_m2, m2); int v2 = mul(add(z[i], m3 - add(x[i], mul(m1, v1, m3), m3), m3), m12_inv_m3, m3); ret[i] = add(x[i], add(mul(m1, v1, mod), mul(m12_mod, v2, mod), mod), mod); } return ret; } int main() { const int N = 2000000; int p; cin >> p; vector<ModInt> a(N + 1, 0); a[2] = 1; FOR(i, 3, N + 1) a[i] = a[i - 1] * p + a[i - 2]; vector<int> A(N + 1), B(N + 1); REP(i, N + 1) A[i] = B[i] = a[i].val; vector<int> ans = AnyModNTTMultiply(A, B, 1000000007); int q; cin >> q; while (q--) { int q; cin >> q; cout << ans[q] << '\n'; } return 0; }