結果

問題 No.980 Fibonacci Convolution Hard
ユーザー uwiuwi
提出日時 2020-01-31 22:30:19
言語 Java21
(openjdk 21)
結果
AC  
実行時間 1,225 ms / 2,000 ms
コード長 14,948 bytes
コンパイル時間 4,163 ms
コンパイル使用メモリ 89,684 KB
実行使用メモリ 73,812 KB
最終ジャッジ日時 2024-09-17 11:35:52
合計ジャッジ時間 27,655 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,193 ms
73,768 KB
testcase_01 AC 1,225 ms
73,424 KB
testcase_02 AC 1,151 ms
73,728 KB
testcase_03 AC 1,173 ms
73,524 KB
testcase_04 AC 1,186 ms
73,628 KB
testcase_05 AC 1,168 ms
73,812 KB
testcase_06 AC 1,176 ms
73,660 KB
testcase_07 AC 1,197 ms
73,612 KB
testcase_08 AC 1,199 ms
73,744 KB
testcase_09 AC 1,192 ms
73,448 KB
testcase_10 AC 1,168 ms
73,636 KB
testcase_11 AC 1,163 ms
73,560 KB
testcase_12 AC 1,177 ms
73,648 KB
testcase_13 AC 1,178 ms
73,628 KB
testcase_14 AC 1,172 ms
73,632 KB
testcase_15 AC 1,178 ms
73,512 KB
testcase_16 AC 1,174 ms
73,724 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package contest200131;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;

public class F {
	InputStream is;
	PrintWriter out;
	String INPUT = "";
	// 1 6 29 126
	// 1 8 50 280
	// 1 10 77 530
	
	// 0 1 p p^2+1 p^3+2p p^4+3p^2+1 p^5+4p^3+3p
	// 2p
	// 3p^2+2
	// 4p^3+6p
	// 2p^4+6p^2+2+2p^4+4p^2+p^4+2p^2+1
	// 5p^4+12p^2+3
	
	// C(n-m,m)*(n+1-m)*p^2~
	// (n-m)!/(n-2m)!/m!*(n+1-m)*p^4+..
	
	void solve()
	{
		int P = ni();
		long[] a = new long[200];
//		long[] a = new long[10];
		a[1] = 1;
		int mod = 1000000007;
		for(int i = 2;i < a.length;i++){
			a[i] = (a[i-1] * P + a[i-2]) % mod;
		}
		long[] b = convolute(a, a, 3, mod);
		long[][] f = Arrays.copyOf(guessLeaned(mod, Arrays.copyOf(b, 20)), 3);
		long[] ret = Arrays.copyOf(b, 2000001);
		for(int i = f.length;i <= 2000000;i++){
			long[] q = Arrays.copyOfRange(ret, i-(f.length-1), i);
			ret[i] = f(f, q, i, mod);
		}
		for(int Q = ni();Q > 0;Q--){
			out.println(ret[ni()-2]);
		}
	}
	
	public static long[][] guessLeaned(int mod, long... a)
	{
		int n = a.length;
		
		// #formula >= #variable
		// n-r+2 >= r(r+1)/2
		for(int r = n;r >= 1;r--){
			if(n-r+2 < r*(r+1)/2)continue;
			int[][] M = new int[n-r+2][r*(r+1)/2];
			for(int i = 0;i < n-r+1;i++){
				int p = 0;
				for(int j = 0;j < r;j++){
					long prod = 1;
					for(int k = 0;k <= r-j-1;k++){
						M[i][p++] = (int)(prod*a[i+j]%mod);
						prod = prod * i % mod;
					}
				}
			}
			M[n-r+1][0] = 1;
			
			int[] v = new int[n-r+2];
			v[n-r+1] = 1;
			
			Result res = gaussElimination(M, v, mod);
			if(res.exists){
				long[][] ret = new long[r][];
				int p = 0;
				for(int i = 0;i < r;i++){
					ret[i] = new long[r-i];
					for(int j = 0;j < r-i;j++){
						ret[i][j] = res.sol[p++];
					}
				}
				return ret;
			}
		}
		return null;
	}
	
	public static Result gaussElimination(int[][] M, int[] v, int mod)
	{
		int n = M.length, m = M[0].length;
		int[] head = new int[n];
		
		// if not needed, comment out.
		for(int[] row : M){
			for(int i = 0;i < row.length;i++){
				row[i] %= mod;
				if(row[i] < 0)row[i] += mod;
			}
		}
		
		// Forward Elimination
		int row = 0;
		for(int col = 0;col < m;col++){
			// select pivot
			boolean pivotFound = false;
			out:
			for(int prow = row;prow < n;prow++){
				if(M[prow][col] != 0){
					// pivot found
					if(prow != row){
						// swap rows
						for(int k = 0;k < m;k++){
							int u = M[prow][k]; M[prow][k] = M[row][k]; M[row][k] = u;
						}
						int dum = v[prow]; v[prow] = v[row]; v[row] = dum;
					}
					pivotFound = true;
					break out;
				}
			}
			if(!pivotFound)continue;
			head[row] = col;
			
			// diag to 1
			long imul = invl(M[row][col], mod);
			for(int k = 0;k < m;k++){
				M[row][k] = (int)(M[row][k] * imul % mod);
			}
			v[row] = (int)(v[row] * imul % mod);
			
			for(int j = row+1;j < n;j++){
				if(M[j][col] != 0){
					long mul = mod-M[j][col];
					for(int k = col;k < m;k++){
						M[j][k] = (int)((M[j][k] + M[row][k] * mul) % mod);
					}
					v[j] = (int)((v[j] + v[row] * mul) % mod);
				}
			}
			row++;
		}
		
		Result ret = new Result();
		ret.mat = M;
		for(int i = row;i < n;i++){
			if(v[i] != 0){
				ret.rank = row;
				ret.exists = false;
				return ret;
			}
		}
		
		for(int i = row-1;i >= 0;i--){
			for(int j = i-1;j >= 0;j--){
				if(M[j][head[i]] != 0){
					long mul = mod-M[j][head[i]];
					for(int k = head[i];k < m;k++){
						M[j][k] = (int)((M[j][k] + M[i][k] * mul) % mod);
					}
					v[j] = (int)((v[j] + v[i] * mul) % mod);
				}
			}
		}
		
		int[] retv = new int[m];
		for(int i = 0;i < row;i++){
			retv[head[i]] = v[i];
		}
		
		ret.sol = retv;
		ret.rank = row;
		ret.exists = true;
		return ret;
	}
	
	public static class Result
	{
		public int[][] mat;
		public int[] sol;
		public int rank;
		public boolean exists;
	}

	
	/**
	 * 
	 * @param ged guessしたやつ
	 * @param prevs 求めたい項の直前len(ged)-1項。末尾が求めたい項に近いほう
	 * @param x 求めたい項の番号
	 * @param mod
	 * @return
	 */
	public static long f(long[][] ged, long[] prevs, long x, int mod)
	{
		int n = ged.length;
		assert prevs.length == n-1;
		x -= n-1;
		
		long s = 0;
		long tar = 0;
		for(int i = 0;i < n;i++){
			long co = 0;
			for(int j = ged[i].length-1;j >= 0;j--){
				co = (co * x + ged[i][j]) % mod;
			}
			if(i < n-1){
				s += co * prevs[i];
				s %= mod;
			}else{
				tar = co;
			}
		}
		
		long ret = -invl(tar, mod) * s % mod;
		if(ret < 0)ret += mod;
		return ret;
	}

	
	public static long f(long x, long mod, long[] f)
	{
		long ret = 0;
		for(int i = f.length-1;i >= 0;i--)ret = (ret * x + f[i]) % mod;
		return ret;
	}
	
	public static long[] guess(long mod, long... y)
	{
		int n = y.length;
		long[] dp = new long[n+1];
		dp[0] = 1;
		// (x-x0)(x-x1)...(x-x{n-1})
		for(int i = 0;i < n;i++){
			for(int j = i;j >= 0;j--){
				dp[j+1] += dp[j];
				if(dp[j+1] >= mod)dp[j+1] -= mod;
				dp[j] = dp[j]*-i%mod;
				if(dp[j] < 0)dp[j] += mod;
			}
		}
		
		long[] f = new long[n+1];
		f[0] = 1;
		for(int i = 1;i <= n;i++)f[i] = f[i-1] * i % mod;
		
		long[] ret = new long[n];
		for(int i = 0;i < n;i++){
			long den = f[i]*f[n-1-i]%mod; // (-1)^(n-1-i)*i!*(n-1-i)!
			if(((i^n-1)&1) == 1){
				den = mod - den;
			}
			long iden = invl(den, mod) * y[i] % mod;
			
			long minus = 0;
			for(int j = n-1;j >= 0;j--){
				minus = (dp[j+1] + minus * i) % mod;
				ret[j] = (ret[j] + minus*iden)%mod;
			}
		}
		return ret;
	}

	
//	public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681};
//	public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};
	public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033};
	public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};
	
	public static long[] convoluteSimply(long[] a, long[] b, int P, int g)
	{
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[] fa = nttmb(a, m, false, P, g);
		long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
		for(int i = 0;i < m;i++){
			fa[i] = fa[i]*fb[i]%P;
		}
		return nttmb(fa, m, true, P, g);
	}
	
	public static long[] convolute(long[] a, long[] b)
	{
		int USE = 2;
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[][] fs = new long[USE][];
		for(int k = 0;k < USE;k++){
			int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
			long[] fa = nttmb(a, m, false, P, g);
			long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i]%P;
			}
			fs[k] = nttmb(fa, m, true, P, g);
		}
		
		int[] mods = Arrays.copyOf(NTTPrimes, USE);
		long[] gammas = garnerPrepare(mods);
		int[] buf = new int[USE];
		for(int i = 0;i < fs[0].length;i++){
			for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
			long[] res = garnerBatch(buf, mods, gammas);
			long ret = 0;
			for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j];
			fs[0][i] = ret;
		}
		return fs[0];
	}
	
	public static long[] convolute(long[] a, long[] b, int USE, int mod)
	{
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[][] fs = new long[USE][];
		for(int k = 0;k < USE;k++){
			int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
			long[] fa = nttmb(a, m, false, P, g);
			long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i]%P;
			}
			fs[k] = nttmb(fa, m, true, P, g);
		}
		
		int[] mods = Arrays.copyOf(NTTPrimes, USE);
		long[] gammas = garnerPrepare(mods);
		int[] buf = new int[USE];
		for(int i = 0;i < fs[0].length;i++){
			for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
			long[] res = garnerBatch(buf, mods, gammas);
			long ret = 0;
			for(int j = res.length-1;j >= 0;j--)ret = (ret * mods[j] + res[j]) % mod;
			fs[0][i] = ret;
		}
		return fs[0];
	}
	
	// static int[] wws = new int[270000]; // outer faster
	
	// Modifed Montgomery + Barrett
	private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g)
	{
		long[] dst = Arrays.copyOf(src, n);
		
		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P)<<1;
		int H = Long.numberOfTrailingZeros(K)*2;
		long M = K*K/P;
		
		int[] wws = new int[1<<h-1];
		long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
		long w = (1L<<32)%P;
		for(int k = 0;k < 1<<h-1;k++){
			wws[k] = (int)w;
			w = modh(w*dw, M, H, P);
		}
		long J = invl(P, 1L<<32);
		for(int i = 0;i < h;i++){
			for(int j = 0;j < 1<<i;j++){
				for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
					long u = (dst[s] - dst[t] + 2*P)*wws[k];
					dst[s] += dst[t];
					if(dst[s] >= 2*P)dst[s] -= 2*P;
//					long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;
					long Q = (u<<32)*J>>>32;
					dst[t] = (u>>>32)-(Q*P>>>32)+P;
				}
			}
			if(i < h-1){
				for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2];
			}
		}
		for(int i = 0;i < n;i++){
			if(dst[i] >= P)dst[i] -= P;
		}
		for(int i = 0;i < n;i++){
			int rev = Integer.reverse(i)>>>-h;
			if(i < rev){
				long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
			}
		}
		
		if(inverse){
			long in = invl(n, P);
			for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);
		}
		
		return dst;
	}
	
	// Modified Shoup + Barrett
	private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g)
	{
		long[] dst = Arrays.copyOf(src, n);
		
		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P)<<1;
		int H = Long.numberOfTrailingZeros(K)*2;
		long M = K*K/P;
		
		long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
		long[] wws = new long[1<<h-1];
		long[] ws = new long[1<<h-1];
		long w = 1;
		for(int k = 0;k < 1<<h-1;k++){
			wws[k] = (w<<32)/P;
			ws[k] = w;
			w = modh(w*dw, M, H, P);
		}
		for(int i = 0;i < h;i++){
			for(int j = 0;j < 1<<i;j++){
				for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
					long ndsts = dst[s] + dst[t];
					if(ndsts >= 2*P)ndsts -= 2*P;
					long T = dst[s] - dst[t] + 2*P;
					long Q = wws[k]*T>>>32;
					dst[s] = ndsts;
					dst[t] = ws[k]*T-Q*P&(1L<<32)-1;
				}
			}
//			dw = dw * dw % P;
			if(i < h-1){
				for(int k = 0;k < 1<<h-i-2;k++){
					wws[k] = wws[k*2];
					ws[k] = ws[k*2];
				}
			}
		}
		for(int i = 0;i < n;i++){
			if(dst[i] >= P)dst[i] -= P;
		}
		for(int i = 0;i < n;i++){
			int rev = Integer.reverse(i)>>>-h;
			if(i < rev){
				long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
			}
		}
		
		if(inverse){
			long in = invl(n, P);
			for(int i = 0;i < n;i++){
				dst[i] = modh(dst[i] * in, M, H, P);
			}
		}
		
		return dst;
	}
	
	static final long mask = (1L<<31)-1;
	
	public static long modh(long a, long M, int h, int mod)
	{
		long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;
		return r < mod ? r : r-mod;
	}
	
	private static long[] garnerPrepare(int[] m)
	{
		int n = m.length;
		assert n == m.length;
		if(n == 0)return new long[0];
		long[] gamma = new long[n];
		for(int k = 1;k < n;k++){
			long prod = 1;
			for(int i = 0;i < k;i++){
				prod = prod * m[i] % m[k];
			}
			gamma[k] = invl(prod, m[k]);
		}
		return gamma;
	}
	
	private static long[] garnerBatch(int[] u, int[] m, long[] gamma)
	{
		int n = u.length;
		assert n == m.length;
		long[] v = new long[n];
		v[0] = u[0];
		for(int k = 1;k < n;k++){
			long temp = v[k-1];
			for(int j = k-2;j >= 0;j--){
				temp = (temp * m[j] + v[j]) % m[k];
			}
			v[k] = (u[k] - temp) * gamma[k] % m[k];
			if(v[k] < 0)v[k] += m[k];
		}
		return v;
	}
	
	private static long pow(long a, long n, long mod) {
		//		a %= mod;
		long ret = 1;
		int x = 63 - Long.numberOfLeadingZeros(n);
		for (; x >= 0; x--) {
			ret = ret * ret % mod;
			if (n << 63 - x < 0)
				ret = ret * a % mod;
		}
		return ret;
	}
	
	private static long invl(long a, long mod) {
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		return p < 0 ? p + mod : p;
	}

	
	void run() throws Exception
	{
		is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
		out = new PrintWriter(System.out);
		
		long s = System.currentTimeMillis();
		solve();
		out.flush();
		if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
//		Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
//			@Override
//			public void run() {
//				long s = System.currentTimeMillis();
//				solve();
//				out.flush();
//				if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
//			}
//		};
//		t.start();
//		t.join();
	}
	
	public static void main(String[] args) throws Exception { new F().run(); }
	
	private byte[] inbuf = new byte[1024];
	public int lenbuf = 0, ptrbuf = 0;
	
	private int readByte()
	{
		if(lenbuf == -1)throw new InputMismatchException();
		if(ptrbuf >= lenbuf){
			ptrbuf = 0;
			try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
			if(lenbuf <= 0)return -1;
		}
		return inbuf[ptrbuf++];
	}
	
	private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
	private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
	
	private double nd() { return Double.parseDouble(ns()); }
	private char nc() { return (char)skip(); }
	
	private String ns()
	{
		int b = skip();
		StringBuilder sb = new StringBuilder();
		while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
			sb.appendCodePoint(b);
			b = readByte();
		}
		return sb.toString();
	}
	
	private char[] ns(int n)
	{
		char[] buf = new char[n];
		int b = skip(), p = 0;
		while(p < n && !(isSpaceChar(b))){
			buf[p++] = (char)b;
			b = readByte();
		}
		return n == p ? buf : Arrays.copyOf(buf, p);
	}
	
	private int[] na(int n)
	{
		int[] a = new int[n];
		for(int i = 0;i < n;i++)a[i] = ni();
		return a;
	}
	
	private long[] nal(int n)
	{
		long[] a = new long[n];
		for(int i = 0;i < n;i++)a[i] = nl();
		return a;
	}
	
	private char[][] nm(int n, int m) {
		char[][] map = new char[n][];
		for(int i = 0;i < n;i++)map[i] = ns(m);
		return map;
	}
	
	private int[][] nmi(int n, int m) {
		int[][] map = new int[n][];
		for(int i = 0;i < n;i++)map[i] = na(m);
		return map;
	}
	
	private int ni() { return (int)nl(); }
	
	private long nl()
	{
		long num = 0;
		int b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}
		
		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}
	
	private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
0