結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | fuppy_kyopro |
提出日時 | 2020-01-31 22:32:34 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 8,616 bytes |
コンパイル時間 | 1,738 ms |
コンパイル使用メモリ | 184,604 KB |
実行使用メモリ | 935,168 KB |
最終ジャッジ日時 | 2024-09-17 09:08:41 |
合計ジャッジ時間 | 8,831 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
ソースコード
#include <bits/stdc++.h>//#include <unistd.h>//#include <iostream>using namespace std;#define DEBUG(x) cerr<<#x<<": "<<x<<endl;#define DEBUG_VEC(v) cerr<<#v<<":";for(int i=0;i<v.size();i++) cerr<<" "<<v[i]; cerr<<endl;#define DEBUG_MAT(v) cerr<<#v<<endl;for(int i=0;i<v.size();i++){for(int j=0;j<v[i].size();j++) {cerr<<v[i][j]<<" ";}cerr<<endl;}typedef long long ll;#define int ll#define vi vector<int>#define vl vector<ll>#define vii vector< vector<int> >#define vll vector< vector<ll> >#define vs vector<string>#define pii pair<int,int>#define pis pair<int,string>#define psi pair<string,int>#define pll pair<ll,ll>template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first + t.first, s.second + t.second); }template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); }template<class S, class T> ostream& operator<<(ostream& os, pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; }#define X first#define Y second#define rep(i,n) for(int i=0;i<(n);i++)#define rep1(i,n) for(int i=1;i<=(n);i++)#define rrep(i,n) for(int i=(n)-1;i>=0;i--)#define rrep1(i,n) for(int i=(n);i>0;i--)#define REP(i,a,b) for(int i=a;i<b;i++)#define in(x, a, b) (a <= x && x < b)#define all(c) c.begin(),c.end()template<class T> bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }template<class T> bool chmin(T &a, const T &b) { if (a>b) { a = b; return 1; } return 0; }#define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end());const ll inf = 1000000001;const ll INF = (ll)1e18 + 1;const long double pi = 3.1415926535897932384626433832795028841971L;#define Sp(p) cout<<setprecision(25)<< fixed<<p<<endl;int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 };#define fio() cin.tie(0); ios::sync_with_stdio(false);const ll MOD = 1000000007;//const ll MOD = 998244353;// #define mp make_pair//#define endl '\n'template< int mod >struct ModInt {int x;ModInt() : x(0) {}ModInt(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return ModInt(u);}ModInt pow(ll n) const {ModInt ret(1), mul(x);while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt &a) {ll t;is >> t;a = ModInt< mod >(t);return (is);}static int get_mod() { return mod; }};using modint = ModInt< MOD >;namespace FastFourierTransform {using real = long double;struct C {real x, y;C() : x(0), y(0) {}C(real x, real y) : x(x), y(y) {}inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }inline C conj() const { return C(x, -y); }};const real PI = acosl(-1);int base = 1;vector< C > rts = { {0, 0},{1, 0} };vector< int > rev = {0, 1};void ensure_base(int nbase) {if(nbase <= base) return;rev.resize(1 << nbase);rts.resize(1 << nbase);for(int i = 0; i < (1 << nbase); i++) {rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));}while(base < nbase) {real angle = PI * 2.0 / (1 << (base + 1));for(int i = 1 << (base - 1); i < (1 << base); i++) {rts[i << 1] = rts[i];real angle_i = angle * (2 * i + 1 - (1 << base));rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));}++base;}}void fft(vector< C > &a, int n) {assert((n & (n - 1)) == 0);int zeros = __builtin_ctz(n);ensure_base(zeros);int shift = base - zeros;for(int i = 0; i < n; i++) {if(i < (rev[i] >> shift)) {swap(a[i], a[rev[i] >> shift]);}}for(int k = 1; k < n; k <<= 1) {for(int i = 0; i < n; i += 2 * k) {for(int j = 0; j < k; j++) {C z = a[i + j + k] * rts[j + k];a[i + j + k] = a[i + j] - z;a[i + j] = a[i + j] + z;}}}}vector< ll > multiply(const vector< int > &a, const vector< int > &b) {int need = (int) a.size() + (int) b.size() - 1;int nbase = 1;while((1 << nbase) < need) nbase++;ensure_base(nbase);int sz = 1 << nbase;vector< C > fa(sz);for(int i = 0; i < sz; i++) {int x = (i < (int) a.size() ? a[i] : 0);int y = (i < (int) b.size() ? b[i] : 0);fa[i] = C(x, y);}fft(fa, sz);C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);for(int i = 0; i <= (sz >> 1); i++) {int j = (sz - i) & (sz - 1);C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;fa[i] = z;}for(int i = 0; i < (sz >> 1); i++) {C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];fa[i] = A0 + A1 * s;}fft(fa, sz >> 1);vector< ll > ret(need);for(int i = 0; i < need; i++) {ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);}return ret;}};template< typename T >struct ArbitraryModConvolution {using real = FastFourierTransform::real;using C = FastFourierTransform::C;ArbitraryModConvolution() = default;vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {if(need == -1) need = a.size() + b.size() - 1;int nbase = 0;while((1 << nbase) < need) nbase++;FastFourierTransform::ensure_base(nbase);int sz = 1 << nbase;vector< C > fa(sz);for(int i = 0; i < a.size(); i++) {fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);}fft(fa, sz);vector< C > fb(sz);if(a == b) {fb = fa;} else {for(int i = 0; i < b.size(); i++) {fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);}fft(fb, sz);}real ratio = 0.25 / sz;C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);for(int i = 0; i <= (sz >> 1); i++) {int j = (sz - i) & (sz - 1);C a1 = (fa[i] + fa[j].conj());C a2 = (fa[i] - fa[j].conj()) * r2;C b1 = (fb[i] + fb[j].conj()) * r3;C b2 = (fb[i] - fb[j].conj()) * r4;if(i != j) {C c1 = (fa[j] + fa[i].conj());C c2 = (fa[j] - fa[i].conj()) * r2;C d1 = (fb[j] + fb[i].conj()) * r3;C d2 = (fb[j] - fb[i].conj()) * r4;fa[i] = c1 * d1 + c2 * d2 * r5;fb[i] = c1 * d2 + c2 * d1;}fa[j] = a1 * b1 + a2 * b2 * r5;fb[j] = a1 * b2 + a2 * b1;}fft(fa, sz);fft(fb, sz);vector< T > ret(need);for(int i = 0; i < need; i++) {ll aa = llround(fa[i].x);ll bb = llround(fb[i].x);ll cc = llround(fa[i].y);aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;ret[i] = aa + (bb << 15) + (cc << 30);}return ret;}};int n = 2000002;vector<modint> a(n);vector<modint> b, c;signed main() {int p;cin >> p;a[0] = 0;a[1] = 1;REP(i, 2, n) a[i] = (a[i - 1] * p + a[i - 2]);//DEBUG_VEC(a);b = a;ArbitraryModConvolution<modint> fft;c = fft.multiply(a, b);int q;cin >> q;while (q--) {int s;cin >> s;s -= 2;cout << c[s] << endl;}}