結果

問題 No.980 Fibonacci Convolution Hard
ユーザー fuppy_kyoprofuppy_kyopro
提出日時 2020-01-31 22:32:34
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
実行時間 -
コード長 8,616 bytes
コンパイル時間 1,738 ms
コンパイル使用メモリ 184,604 KB
実行使用メモリ 935,168 KB
最終ジャッジ日時 2024-09-17 09:08:41
合計ジャッジ時間 8,831 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 MLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
//#include <unistd.h>
//#include <iostream>
using namespace std;
#define DEBUG(x) cerr<<#x<<": "<<x<<endl;
#define DEBUG_VEC(v) cerr<<#v<<":";for(int i=0;i<v.size();i++) cerr<<" "<<v[i]; cerr<<endl;
#define DEBUG_MAT(v) cerr<<#v<<endl;for(int i=0;i<v.size();i++){for(int j=0;j<v[i].size();j++) {cerr<<v[i][j]<<" ";}cerr<<endl;}
typedef long long ll;
#define int ll
#define vi vector<int>
#define vl vector<ll>
#define vii vector< vector<int> >
#define vll vector< vector<ll> >
#define vs vector<string>
#define pii pair<int,int>
#define pis pair<int,string>
#define psi pair<string,int>
#define pll pair<ll,ll>
template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first + t.first, s.second + t.second
    ); }
template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second
    ); }
template<class S, class T> ostream& operator<<(ostream& os, pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; }
#define X first
#define Y second
#define rep(i,n) for(int i=0;i<(n);i++)
#define rep1(i,n) for(int i=1;i<=(n);i++)
#define rrep(i,n) for(int i=(n)-1;i>=0;i--)
#define rrep1(i,n) for(int i=(n);i>0;i--)
#define REP(i,a,b) for(int i=a;i<b;i++)
#define in(x, a, b) (a <= x && x < b)
#define all(c) c.begin(),c.end()
template<class T> bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b) { if (a>b) { a = b; return 1; } return 0; }
#define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end());
const ll inf = 1000000001;
const ll INF = (ll)1e18 + 1;
const long double pi = 3.1415926535897932384626433832795028841971L;
#define Sp(p) cout<<setprecision(25)<< fixed<<p<<endl;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 };
#define fio() cin.tie(0); ios::sync_with_stdio(false);
const ll MOD = 1000000007;
//const ll MOD = 998244353;
// #define mp make_pair
//#define endl '\n'
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(ll y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(ll n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
ll t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< MOD >;
namespace FastFourierTransform {
using real = long double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector< C > rts = { {0, 0},
{1, 0} };
vector< int > rev = {0, 1};
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector< C > &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector< ll > multiply(const vector< int > &a, const vector< int > &b) {
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < sz; i++) {
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector< ll > ret(need);
for(int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
template< typename T >
struct ArbitraryModConvolution {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {
if(need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < a.size(); i++) {
fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
}
fft(fa, sz);
vector< C > fb(sz);
if(a == b) {
fb = fa;
} else {
for(int i = 0; i < b.size(); i++) {
fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector< T > ret(need);
for(int i = 0; i < need; i++) {
ll aa = llround(fa[i].x);
ll bb = llround(fb[i].x);
ll cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
int n = 2000002;
vector<modint> a(n);
vector<modint> b, c;
signed main() {
int p;
cin >> p;
a[0] = 0;
a[1] = 1;
REP(i, 2, n) a[i] = (a[i - 1] * p + a[i - 2]);
//DEBUG_VEC(a);
b = a;
ArbitraryModConvolution<modint> fft;
c = fft.multiply(a, b);
int q;
cin >> q;
while (q--) {
int s;
cin >> s;
s -= 2;
cout << c[s] << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0