結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| ユーザー |
emthrm
|
| 提出日時 | 2020-01-31 22:38:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,502 bytes |
| コンパイル時間 | 2,398 ms |
| コンパイル使用メモリ | 212,804 KB |
| 最終ジャッジ日時 | 2025-01-08 21:20:24 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 17 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }
struct IOSetup {
IOSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} iosetup;
int mod = MOD;
struct ModInt {
unsigned val;
ModInt(): val(0) {}
ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {}
ModInt pow(ll exponent) {
ModInt tmp = *this, res = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; }
ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; }
ModInt &operator*=(const ModInt &x) { val = static_cast<unsigned long long>(val) * x.val % mod; return *this; }
ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); }
bool operator==(const ModInt &x) const { return val == x.val; }
bool operator!=(const ModInt &x) const { return val != x.val; }
bool operator<(const ModInt &x) const { return val < x.val; }
bool operator<=(const ModInt &x) const { return val <= x.val; }
bool operator>(const ModInt &x) const { return val > x.val; }
bool operator>=(const ModInt &x) const { return val >= x.val; }
ModInt &operator++() { if (++val == mod) val = 0; return *this; }
ModInt operator++(int) { ModInt res = *this; ++*this; return res; }
ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; }
ModInt operator--(int) { ModInt res = *this; --*this; return res; }
ModInt operator+() const { return *this; }
ModInt operator-() const { return ModInt(val ? mod - val : 0); }
ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; }
friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; }
friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; }
private:
ModInt inv() const {
// assert(__gcd(val, mod) == 1);
unsigned a = val, b = mod; int x = 1, y = 0;
while (b) {
unsigned tmp = a / b;
swap(a -= tmp * b, b);
swap(x -= tmp * y, y);
}
return ModInt(x);
}
};
ModInt abs(const ModInt &x) { return x; }
struct Combinatorics {
int val; // "val!" and "mod" must be disjoint.
vector<ModInt> fact, fact_inv, inv;
Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) {
fact[0] = 1;
FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i;
fact_inv[val] = ModInt(1) / fact[val];
for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i;
FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i];
}
ModInt nCk(int n, int k) {
if (n < 0 || n < k || k < 0) return ModInt(0);
// assert(n <= val && k <= val);
return fact[n] * fact_inv[k] * fact_inv[n - k];
}
ModInt nPk(int n, int k) {
if (n < 0 || n < k || k < 0) return ModInt(0);
// assert(n <= val);
return fact[n] * fact_inv[n - k];
}
ModInt nHk(int n, int k) {
if (n < 0 || k < 0) return ModInt(0);
return (k == 0 ? ModInt(1) : nCk(n + k - 1, k));
}
};
namespace FFT {
using Real = double;
struct Complex {
Real re, im;
Complex(Real re = 0, Real im = 0) : re(re), im(im) {}
inline Complex operator+(const Complex &x) const { return Complex(re + x.re, im + x.im); }
inline Complex operator-(const Complex &x) const { return Complex(re - x.re, im - x.im); }
inline Complex operator*(const Complex &x) const { return Complex(re * x.re - im * x.im, re * x.im + im * x.re); }
inline Complex mul_real(Real r) const { return Complex(re * r, im * r); }
inline Complex mul_pin(Real r) const { return Complex(-im * r, re * r); }
inline Complex conj() const { return Complex(re, -im); }
};
vector<int> butterfly{0};
vector<vector<Complex> > zeta{{{1, 0}}};
void calc(int n) {
int prev_n = butterfly.size();
if (n <= prev_n) return;
butterfly.resize(n);
int prev_lg = zeta.size(), lg = __builtin_ctz(n);
FOR(i, 1, prev_n) butterfly[i] <<= lg - prev_lg;
FOR(i, prev_n, n) butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1));
zeta.resize(lg);
FOR(i, prev_lg, lg) {
zeta[i].resize(1 << i);
Real angle = -M_PI * 2 / (1 << (i + 1));
REP(j, 1 << (i - 1)) {
zeta[i][j << 1] = zeta[i - 1][j];
Real theta = angle * ((j << 1) + 1);
zeta[i][(j << 1) + 1] = {cos(theta), sin(theta)};
}
}
}
void sub_dft(vector<Complex> &a) {
int n = a.size();
// assert(__builtin_popcount(n) == 1);
calc(n);
int shift = __builtin_ctz(butterfly.size()) - __builtin_ctz(n);
REP(i, n) {
int j = butterfly[i] >> shift;
if (i < j) swap(a[i], a[j]);
}
for (int block = 1; block < n; block <<= 1) {
int den = __builtin_ctz(block);
for (int i = 0; i < n; i += (block << 1)) REP(j, block) {
Complex tmp = a[i + j + block] * zeta[den][j];
a[i + j + block] = a[i + j] - tmp;
a[i + j] = a[i + j] + tmp;
}
}
}
template <typename T>
vector<Complex> dft(const vector<T> &a) {
int sz = a.size(), lg = 1;
while ((1 << lg) < sz) ++lg;
vector<Complex> c(1 << lg);
REP(i, sz) c[i].re = a[i];
sub_dft(c);
return c;
}
vector<Real> real_idft(vector<Complex> &a) {
int n = a.size(), half = n >> 1, quarter = half >> 1;
// assert(__builtin_popcount(n) == 1);
calc(n);
a[0] = (a[0] + a[half] + (a[0] - a[half]).mul_pin(1)).mul_real(0.5);
int den = __builtin_ctz(half);
FOR(i, 1, quarter) {
int j = half - i;
Complex tmp1 = a[i] + a[j].conj(), tmp2 = ((a[i] - a[j].conj()) * zeta[den][j]).mul_pin(1);
a[i] = (tmp1 - tmp2).mul_real(0.5);
a[j] = (tmp1 + tmp2).mul_real(0.5).conj();
}
if (quarter > 0) a[quarter] = a[quarter].conj();
a.resize(half);
sub_dft(a);
reverse(a.begin() + 1, a.end());
Real r = 1.0 / half;
vector<Real> res(n);
REP(i, n) res[i] = (i & 1 ? a[i >> 1].im : a[i >> 1].re) * r;
return res;
}
void idft(vector<Complex> &a) {
int n = a.size();
sub_dft(a);
reverse(a.begin() + 1, a.end());
Real r = 1.0 / n;
REP(i, n) a[i] = a[i].mul_real(r);
}
template <typename T>
vector<Real> convolution(const vector<T> &a, const vector<T> &b) {
int a_sz = a.size(), b_sz = b.size(), sz = a_sz + b_sz - 1, lg = 1;
while ((1 << lg) < sz) ++lg;
int n = 1 << lg;
vector<Complex> c(n);
REP(i, a_sz) c[i].re = a[i];
REP(i, b_sz) c[i].im = b[i];
sub_dft(c);
int half = n >> 1;
c[0] = Complex(c[0].re * c[0].im, 0);
FOR(i, 1, half) {
Complex i_square = c[i] * c[i], j_square = c[n - i] * c[n - i];
c[i] = (j_square.conj() - i_square).mul_pin(0.25);
c[n - i] = (i_square.conj() - j_square).mul_pin(0.25);
}
c[half] = Complex(c[half].re * c[half].im, 0);
vector<Real> res = real_idft(c);
res.resize(sz);
return res;
}
};
vector<ModInt> mod_convolution(const vector<ModInt> &a, const vector<ModInt> &b, const int pre = 15) {
using Complex = FFT::Complex;
int a_sz = a.size(), b_sz = b.size(), sz = a_sz + b_sz - 1, lg = 1;
while ((1 << lg) < sz) ++lg;
int n = 1 << lg;
vector<Complex> A(n), B(n);
REP(i, a_sz) {
int ai = a[i].val;
A[i] = Complex(ai & ((1 << pre) - 1), ai >> pre);
}
REP(i, b_sz) {
int bi = b[i].val;
B[i] = Complex(bi & ((1 << pre) - 1), bi >> pre);
}
FFT::sub_dft(A);
FFT::sub_dft(B);
int half = n >> 1;
Complex tmp_a = A[0], tmp_b = B[0];
A[0] = {tmp_a.re * tmp_b.re, tmp_a.im * tmp_b.im};
B[0] = {tmp_a.re * tmp_b.im + tmp_a.im * tmp_b.re, 0};
FOR(i, 1, half) {
int j = n - i;
Complex a_l_i = (A[i] + A[j].conj()).mul_real(0.5), a_h_i = (A[j].conj() - A[i]).mul_pin(0.5);
Complex b_l_i = (B[i] + B[j].conj()).mul_real(0.5), b_h_i = (B[j].conj() - B[i]).mul_pin(0.5);
Complex a_l_j = (A[j] + A[i].conj()).mul_real(0.5), a_h_j = (A[i].conj() - A[j]).mul_pin(0.5);
Complex b_l_j = (B[j] + B[i].conj()).mul_real(0.5), b_h_j = (B[i].conj() - B[j]).mul_pin(0.5);
A[i] = a_l_i * b_l_i + (a_h_i * b_h_i).mul_pin(1);
B[i] = a_l_i * b_h_i + a_h_i * b_l_i;
A[j] = a_l_j * b_l_j + (a_h_j * b_h_j).mul_pin(1);
B[j] = a_l_j * b_h_j + a_h_j * b_l_j;
}
tmp_a = A[half]; tmp_b = B[half];
A[half] = {tmp_a.re * tmp_b.re, tmp_a.im * tmp_b.im};
B[half] = {tmp_a.re * tmp_b.im + tmp_a.im * tmp_b.re, 0};
FFT::idft(A);
FFT::idft(B);
vector<ModInt> res(sz);
ModInt tmp1 = 1 << pre, tmp2 = 1LL << (pre << 1);
REP(i, sz) {
res[i] += static_cast<ll>(A[i].re + 0.5);
res[i] += tmp1 * static_cast<ll>(B[i].re + 0.5);
res[i] += tmp2 * static_cast<ll>(A[i].im + 0.5);
}
return res;
}
int main() {
const int N = 2000000;
int p; cin >> p;
vector<ModInt> a1(N / 2 + 1, 0), a2(N / 2);
a1[2] = 1;
FOR(i, 3, N / 2 + 1) a1[i] = a1[i - 1] * p + a1[i - 2];
a2[0] = a1[N / 2] * p + a1[N / 2 - 1];
a2[1] = a2[0] * p + a1[N / 2];
FOR(i, 2, N / 2) a2[i] = a2[i - 1] * p + a2[i - 2];
vector<ModInt> ans(N + 1, 0);
vector<ModInt> tmp = mod_convolution(a1, a1);
for (int i = 0; i < tmp.size() && i <= N; ++i) ans[i] = tmp[i];
tmp = mod_convolution(a1, a2);
REP(i, tmp.size()) {
int idx = i + N / 2 + 1;
if (idx > N) break;
ans[idx] += tmp[i] * 2;
}
int q; cin >> q;
while (q--) {
int q; cin >> q;
cout << ans[q] << '\n';
}
return 0;
}
emthrm