結果

問題 No.978 Fibonacci Convolution Easy
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-01-31 22:57:00
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 24 ms / 2,000 ms
コード長 5,270 bytes
コンパイル時間 1,787 ms
コンパイル使用メモリ 175,052 KB
実行使用メモリ 11,136 KB
最終ジャッジ日時 2024-09-18 21:01:54
合計ジャッジ時間 2,639 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 19 ms
10,880 KB
testcase_01 AC 20 ms
10,864 KB
testcase_02 AC 19 ms
11,008 KB
testcase_03 AC 23 ms
11,008 KB
testcase_04 AC 19 ms
11,008 KB
testcase_05 AC 19 ms
10,916 KB
testcase_06 AC 20 ms
11,096 KB
testcase_07 AC 23 ms
11,008 KB
testcase_08 AC 22 ms
11,008 KB
testcase_09 AC 23 ms
11,136 KB
testcase_10 AC 24 ms
10,880 KB
testcase_11 AC 19 ms
10,960 KB
testcase_12 AC 18 ms
11,044 KB
testcase_13 AC 19 ms
10,880 KB
testcase_14 AC 19 ms
10,868 KB
testcase_15 AC 21 ms
10,880 KB
testcase_16 AC 23 ms
10,868 KB
testcase_17 AC 22 ms
10,880 KB
testcase_18 AC 18 ms
11,008 KB
testcase_19 AC 18 ms
10,880 KB
testcase_20 AC 18 ms
10,932 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define rep(i,N) for(long long i = 0; i < (long long)(N); i++)
#define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--)
#define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++)
#define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--)
#define each(x,v) for(auto& x : v)
#define all(v) (v).begin(),(v).end()
#define sz(v) ((int)(v).size())
#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)
#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)
#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)
using namespace std; void solve();
using ll = long long; template<class T = ll> using V = vector<T>;
using vi = V<int>; using vl = V<>; using vvi = V< V<int> >;
constexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1;
struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;
template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; }
template<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }
template<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; }
template<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }
void in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}
void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);}
template<typename T>void die(T x){out(x); exit(0);}
#ifdef NyaanDebug
  #include "NyaanDebug.h"
  #define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0)
  #define trca(v,N) do { cerr << #v << " = "; array_out(v , N);cout << endl;} while(0)
#else
  #define trc(...)
  #define trca(...)
  int main(){solve();}
#endif

using P = pair<ll,ll>; using vp = V<P>;
constexpr int MOD = /**/ 1000000007; //*/ 998244353;
////////////////////////////////

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< MOD >;
using vm = vector<modint>;

vector<ll> fac,finv,inv;
void cominit(int MAX) {
  MAX++;
  fac.resize(MAX , 0);
  finv.resize(MAX , 0);
  inv.resize(MAX , 0);
  fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1;
  for (int i = 2; i < MAX; i++){
    fac[i] = fac[i - 1] * i % MOD;
    inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
    finv[i] = finv[i - 1] * inv[i] % MOD;
  }
}
// nCk combination 
inline long long COM(int n,int k){
  if(n < k || k < 0 || n < 0) return 0;
  else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
// nPk permutation
inline long long PER(int n,int k){
  if (n < k || k < 0 || n < 0) return 0;
  else return (fac[n] * finv[n - k]) % MOD;
}
// nHk homogeneous polynomial
inline long long HGP(int n,int k){
  if(n == 0 && k == 0) return 1; //問題依存?
  else if(n < 1 || k < 0) return 0;
  else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD;
}


void solve(){
  ini(N , p);
  int M = 2001001;
  vm a(2002002);
  a[1] = 0 , a[2] = 1;
  rep1(i , M) a[i + 2] = a[i + 1] * p + a[i];
  modint s = 0;
  modint ans = 0;
  rep1(i , N) s += a[i] , ans += a[i] * a[i];
  ans += s * s;
  out(ans / 2);

}
0