結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| コンテスト | |
| ユーザー |
fuppy_kyopro
|
| 提出日時 | 2020-01-31 23:29:03 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,677 bytes |
| コンパイル時間 | 2,720 ms |
| コンパイル使用メモリ | 201,780 KB |
| 実行使用メモリ | 164,240 KB |
| 最終ジャッジ日時 | 2024-09-17 10:54:08 |
| 合計ジャッジ時間 | 27,389 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#ifdef __linux__
#define getchar getchar_unlocked
#define putchar putchar_unlocked
#endif
template <class Z> Z getint() {
char c = getchar();
bool neg = c == '-';
Z res = neg ? 0 : c - '0';
while (isdigit(c = getchar())) res = res * 10 + (c - '0');
return neg ? -res : res;
}
template <class Z> void putint(Z a, char c = '\n') {
if (a < 0) putchar('-'), a = -a;
int d[40], i = 0;
do d[i++] = a % 10; while (a /= 10);
while (i--) putchar('0' + d[i]);
putchar(c);
}
template <class T, class F = multiplies<T>>
T power(T a, long long n, F op = multiplies<T>(), T e = {1}) {
assert(n >= 0);
T res = e;
while (n) {
if (n & 1) res = op(res, a);
if (n >>= 1) a = op(a, a);
}
return res;
}
template <unsigned Mod> struct Modular {
using M = Modular;
unsigned v;
Modular(long long a = 0) : v((a %= Mod) < 0 ? a + Mod : a) {}
M operator-() const { return M() -= *this; }
M& operator+=(M r) { if ((v += r.v) >= Mod) v -= Mod; return *this; }
M& operator-=(M r) { if ((v += Mod - r.v) >= Mod) v -= Mod; return *this; }
M& operator*=(M r) { v = (uint64_t)v * r.v % Mod; return *this; }
M& operator/=(M r) { return *this *= power(r, Mod - 2); }
friend M operator+(M l, M r) { return l += r; }
friend M operator-(M l, M r) { return l -= r; }
friend M operator*(M l, M r) { return l *= r; }
friend M operator/(M l, M r) { return l /= r; }
friend bool operator==(M l, M r) { return l.v == r.v; }
};
template <unsigned Mod> void ntt(vector<Modular<Mod>>& a, bool inverse) {
static vector<Modular<Mod>> dw(30), idw(30);
if (dw[0] == 0) {
Modular<Mod> root = 2;
while (power(root, (Mod - 1) / 2) == 1) root += 1;
for (int i = 0; i < 30; ++i)
dw[i] = -power(root, (Mod - 1) >> (i + 2)), idw[i] = 1 / dw[i];
}
int n = a.size();
assert((n & (n - 1)) == 0);
if (not inverse) {
for (int m = n; m >>= 1; ) {
Modular<Mod> w = 1;
for (int s = 0, k = 0; s < n; s += 2 * m) {
for (int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
if (x.v >= Mod) x.v -= Mod;
a[i].v = x.v + y.v, a[j].v = x.v + (Mod - y.v);
}
w *= dw[__builtin_ctz(++k)];
}
}
} else {
for (int m = 1; m < n; m *= 2) {
Modular<Mod> w = 1;
for (int s = 0, k = 0; s < n; s += 2 * m) {
for (int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j].v = x.v + (Mod - y.v), a[j] *= w;
}
w *= idw[__builtin_ctz(++k)];
}
}
}
auto c = 1 / Modular<Mod>(inverse ? n : 1);
for (auto&& e : a) e *= c;
}
template <unsigned Mod>
vector<Modular<Mod>> operator*(vector<Modular<Mod>> l, vector<Modular<Mod>> r) {
if (l.empty() or r.empty()) return {};
int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1);
if (min(n, m) < 30) {
vector<long long> res(n + m - 1);
for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j)
res[i + j] += (l[i] * r[j]).v;
return {begin(res), end(res)};
}
bool eq = l == r;
l.resize(sz), ntt(l, false);
if (eq) r = l;
else r.resize(sz), ntt(r, false);
for (int i = 0; i < sz; ++i) l[i] *= r[i];
ntt(l, true), l.resize(n + m - 1);
return l;
}
constexpr long long mod = 1e9 + 7;
using Mint = Modular<mod>;
vector<Mint> operator*(const vector<Mint>& l, const vector<Mint>& r) {
if (l.empty() or r.empty()) return {};
int n = l.size(), m = r.size();
static constexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617;
using Mint0 = Modular<mod0>;
using Mint1 = Modular<mod1>;
using Mint2 = Modular<mod2>;
vector<Mint0> l0(n), r0(m);
vector<Mint1> l1(n), r1(m);
vector<Mint2> l2(n), r2(m);
for (int i = 0; i < n; ++i) l0[i] = l[i].v, l1[i] = l[i].v, l2[i] = l[i].v;
for (int j = 0; j < m; ++j) r0[j] = r[j].v, r1[j] = r[j].v, r2[j] = r[j].v;
l0 = l0 * r0, l1 = l1 * r1, l2 = l2 * r2;
vector<Mint> res(n + m - 1);
static const Mint1 im0 = 1 / Mint1(mod0);
static const Mint2 im1 = 1 / Mint2(mod1), im0m1 = im1 / mod0;
static const Mint m0 = mod0, m0m1 = m0 * mod1;
for (int i = 0; i < n + m - 1; ++i) {
int y0 = l0[i].v;
int y1 = (im0 * (l1[i] - y0)).v;
int y2 = (im0m1 * (l2[i] - y0) - im1 * y1).v;
res[i] = y0 + m0 * y1 + m0m1 * y2;
}
return res;
}
int main() {
int p = getint<int>();
int n = 2000002;
vector<Mint> a(n);
a[0] = 0; a[1] = 1;
for (int i = 2; i < n; i++) a[i] = a[i - 1] * p + a[i - 2];
vector<Mint> b = a;
a = a * b;
int q;
cin >> q;
while (q--) {
int s;
cin >> s;
s--;
cout << a[s].v << '\n';
}
}
fuppy_kyopro