結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| ユーザー |
iiljj
|
| 提出日時 | 2020-02-01 00:55:39 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 14,517 bytes |
| コンパイル時間 | 2,420 ms |
| コンパイル使用メモリ | 183,336 KB |
| 最終ジャッジ日時 | 2025-03-16 14:34:27 |
| 合計ジャッジ時間 | 4,841 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
In file included from /usr/include/c++/13/string:43,
from /usr/include/c++/13/bitset:52,
from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:52,
from main.cpp:6:
/usr/include/c++/13/bits/allocator.h: In destructor ‘std::_Vector_base<modular<base>, std::allocator<modular<base> > >::_Vector_impl::~_Vector_impl()’:
/usr/include/c++/13/bits/allocator.h:184:7: error: inlining failed in call to ‘always_inline’ ‘std::allocator< <template-parameter-1-1> >::~allocator() noexcept [with _Tp = modular<base>]’: target specific option mismatch
184 | ~allocator() _GLIBCXX_NOTHROW { }
| ^
In file included from /usr/include/c++/13/vector:66,
from /usr/include/c++/13/queue:63,
from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:157:
/usr/include/c++/13/bits/stl_vector.h:133:14: note: called from here
133 | struct _Vector_impl
| ^~~~~~~~~~~~
ソースコード
/* #region Head */
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define PREM(c) \
sort(all(c)); \
for (bool c##p = 1; c##p; c##p = next_permutation(all(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;
// vector入力
template <typename T>
istream &operator>>(istream &is, vc<T> &vec)
{
for (T &x : vec)
is >> x;
return is;
}
// vector出力 (for dump)
template <typename T>
ostream &operator<<(ostream &os, vc<T> &vec)
{
ll len = SIZE(vec);
os << "{";
for (int i = 0; i < len; i++)
os << vec[i] << (i == len - 1 ? "" : ", ");
os << "}";
return os;
}
// vector出力 (inline)
template <typename T>
ostream &operator>>(ostream &os, vc<T> &vec)
{
ll len = SIZE(vec);
for (int i = 0; i < len; i++)
os << vec[i] << (i == len - 1 ? "\n" : " ");
return os;
}
// pair入力
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &pair_var)
{
is >> pair_var.first >> pair_var.second;
return is;
}
// pair出力
template <typename T, typename U>
ostream &operator<<(ostream &os, pair<T, U> &pair_var)
{
os << "(" << pair_var.first << ", " << pair_var.second << ")";
return os;
}
// map出力
template <typename T, typename U>
ostream &operator<<(ostream &os, map<T, U> &map_var)
{
os << "{";
REPI(itr, map_var)
{
os << *itr;
itr++;
if (itr != map_var.end())
os << ", ";
itr--;
}
os << "}";
return os;
}
// set 出力
template <typename T>
ostream &operator<<(ostream &os, set<T> &set_var)
{
os << "{";
REPI(itr, set_var)
{
os << *itr;
itr++;
if (itr != set_var.end())
os << ", ";
itr--;
}
os << "}";
return os;
}
// dump
#define DUMPOUT cerr
void dump_func()
{
DUMPOUT << endl;
}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail)
{
DUMPOUT << head;
if (sizeof...(Tail) > 0)
{
DUMPOUT << ", ";
}
dump_func(move(tail)...);
}
// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>>
bool chmax(T &xmax, const U &x, Comp comp = {})
{
if (comp(xmax, x))
{
xmax = x;
return true;
}
return false;
}
// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>>
bool chmin(T &xmin, const U &x, Comp comp = {})
{
if (comp(x, xmin))
{
xmin = x;
return true;
}
return false;
}
// ローカル用
#define DEBUG_
#ifdef DEBUG_
#define DEB
#define dump(...) \
DUMPOUT << " " << string(#__VA_ARGS__) << ": " \
<< "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" \
<< endl \
<< " ", \
dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif
struct AtCoderInitialize
{
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
AtCoderInitialize()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cout << fixed << setprecision(IOS_PREC);
if (AUTOFLUSH)
cout << unitbuf;
}
} ATCODER_INITIALIZE;
/* #endregion */
/* #region ConvWithMint */
#define rep(i, b) REP(i, 0, b)
#define si(x) int(x.size())
//size of input must be a power of 2
//output of forward fmt is bit-reversed
//output elements are in the range [0,mod*4)
//input of inverse fmt should be bit-reversed
template <class mint>
void inplace_fmt(vector<mint> &f, bool inv)
{
const int n = si(f);
static const int L = 30;
static mint g[L], ig[L], p2[L];
if (g[0].v == 0)
{
rep(i, L)
{
mint w = -mint::root().pow(((mint::mod - 1) >> (i + 2)) * 3);
g[i] = w;
ig[i] = w.inv();
p2[i] = mint(1 << i).inv();
}
}
static constexpr uint mod2 = mint::mod * 2;
if (!inv)
{
int b = n;
if (b >>= 1)
{ //input:[0,mod)
rep(i, b)
{
uint x = f[i + b].v;
f[i + b].v = f[i].v + mint::mod - x;
f[i].v += x;
}
}
if (b >>= 1)
{ //input:[0,mod*2)
mint p = 1;
for (int i = 0, k = 0; i < n; i += b * 2)
{
REP(j, i, i + b)
{
uint x = (f[j + b] * p).v;
//f[j].v=(f[j].v<mint::mod?f[j].v:f[j].v-mint::mod);
f[j + b].v = f[j].v + mint::mod - x;
f[j].v += x;
}
p *= g[__builtin_ctz(++k)];
}
}
while (b)
{
if (b >>= 1)
{ //input:[0,mod*3)
mint p = 1;
for (int i = 0, k = 0; i < n; i += b * 2)
{
REP(j, i, i + b)
{
uint x = (f[j + b] * p).v;
//f[j].v=(f[j].v<mint::mod?f[j].v:f[j].v-mint::mod);
f[j + b].v = f[j].v + mint::mod - x;
f[j].v += x;
}
p *= g[__builtin_ctz(++k)];
}
}
if (b >>= 1)
{ //input:[0,mod*4)
mint p = 1;
for (int i = 0, k = 0; i < n; i += b * 2)
{
REP(j, i, i + b)
{
uint x = (f[j + b] * p).v;
f[j].v = (f[j].v < mod2 ? f[j].v : f[j].v - mod2);
f[j + b].v = f[j].v + mint::mod - x;
f[j].v += x;
}
p *= g[__builtin_ctz(++k)];
}
}
}
}
else
{
int b = 1;
if (b < n / 2)
{ //input:[0,mod)
mint p = 1;
for (int i = 0, k = 0; i < n; i += b * 2)
{
REP(j, i, i + b)
{
ull x = f[j].v + mint::mod - f[j + b].v;
f[j].v += f[j + b].v;
f[j + b].v = x * p.v % mint::mod;
}
p *= ig[__builtin_ctz(++k)];
}
b <<= 1;
}
for (; b < n / 2; b <<= 1)
{
mint p = 1;
for (int i = 0, k = 0; i < n; i += b * 2)
{
REP(j, i, i + b / 2)
{ //input:[0,mod*2)
ull x = f[j].v + mod2 - f[j + b].v;
f[j].v += f[j + b].v;
f[j].v = (f[j].v) < mod2 ? f[j].v : f[j].v - mod2;
f[j + b].v = x * p.v % mint::mod;
}
REP(j, i + b / 2, i + b)
{ //input:[0,mod)
ull x = f[j].v + mint::mod - f[j + b].v;
f[j].v += f[j + b].v;
//f[j].v=(f[j].v)<mod2?f[j].v:f[j].v-mod2;
f[j + b].v = x * p.v % mint::mod;
}
p *= ig[__builtin_ctz(++k)];
}
}
if (b < n)
{ //input:[0,mod*2)
rep(i, b)
{
uint x = f[i + b].v;
f[i + b].v = f[i].v + mod2 - x;
f[i].v += x;
}
}
mint z = p2[__lg(n)];
rep(i, n) f[i] *= z;
}
}
struct modinfo
{
uint mod, root;
};
template <modinfo const &ref>
struct modular
{
static constexpr uint const &mod = ref.mod;
static modular root() { return modular(ref.root); }
uint v;
//modular(initializer_list<uint>ls):v(*ls.bg){}
modular(ll vv = 0) { s(vv % mod + mod); }
modular &s(uint vv)
{
v = vv < mod ? vv : vv - mod;
return *this;
}
modular operator-() const { return modular() - *this; }
modular &operator+=(const modular &rhs) { return s(v + rhs.v); }
modular &operator-=(const modular &rhs) { return s(v + mod - rhs.v); }
modular &operator*=(const modular &rhs)
{
v = ull(v) * rhs.v % mod;
return *this;
}
modular &operator/=(const modular &rhs) { return *this *= rhs.inv(); }
modular operator+(const modular &rhs) const { return modular(*this) += rhs; }
modular operator-(const modular &rhs) const { return modular(*this) -= rhs; }
modular operator*(const modular &rhs) const { return modular(*this) *= rhs; }
modular operator/(const modular &rhs) const { return modular(*this) /= rhs; }
modular pow(int n) const
{
modular res(1), x(*this);
while (n)
{
if (n & 1)
res *= x;
x *= x;
n >>= 1;
}
return res;
}
modular inv() const { return pow(mod - 2); }
/*modular inv()const{
int x,y;
int g=extgcd(v,mod,x,y);
assert(g==1);
if(x<0)x+=mod;
return modular(x);
}*/
friend modular operator+(int x, const modular &y)
{
return modular(x) + y;
}
friend modular operator-(int x, const modular &y)
{
return modular(x) - y;
}
friend modular operator*(int x, const modular &y)
{
return modular(x) * y;
}
friend modular operator/(int x, const modular &y)
{
return modular(x) / y;
}
friend ostream &operator<<(ostream &os, const modular &m)
{
return os << m.v;
}
friend istream &operator>>(istream &is, modular &m)
{
ll x;
is >> x;
m = modular(x);
return is;
}
bool operator<(const modular &r) const { return v < r.v; }
bool operator==(const modular &r) const { return v == r.v; }
bool operator!=(const modular &r) const { return v != r.v; }
explicit operator bool() const
{
return v;
}
};
//59501818244292734739283969=5.95*10^25 までの値を正しく計算
//最終的な列の大きさが 2^24 までなら動く
//最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?)
//VERIFY: yosupo
namespace arbitrary_convolution
{
constexpr modinfo base0{167772161, 3}; //2^25 * 5 + 1
constexpr modinfo base1{469762049, 3}; //2^26 * 7 + 1
constexpr modinfo base2{754974721, 11}; //2^24 * 45 + 1
//constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1
//constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1
//constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1
using mint0 = modular<base0>;
using mint1 = modular<base1>;
using mint2 = modular<base2>;
template <class t, class mint>
vc<t> sub(const vc<mint> &x, const vc<mint> &y, bool same = false)
{
int n = si(x) + si(y) - 1;
int s = 1;
while (s < n)
s *= 2;
vc<t> z(s);
rep(i, si(x)) z[i] = x[i].v;
inplace_fmt(z, false);
if (!same)
{
vc<t> w(s);
rep(i, si(y)) w[i] = y[i].v;
inplace_fmt(w, false);
rep(i, s) z[i] *= w[i];
}
else
{
rep(i, s) z[i] *= z[i];
}
inplace_fmt(z, true);
z.resize(n);
return z;
}
template <class mint>
vc<mint> multiply(const vc<mint> &x, const vc<mint> &y, bool same = false)
{
auto d0 = sub<mint0>(x, y, same);
auto d1 = sub<mint1>(x, y, same);
auto d2 = sub<mint2>(x, y, same);
int n = si(d0);
vc<mint> res(n);
static const mint1 r01 = mint1(mint0::mod).inv();
static const mint2 r02 = mint2(mint0::mod).inv();
static const mint2 r12 = mint2(mint1::mod).inv();
static const mint2 r02r12 = r02 * r12;
static const mint w1 = mint(mint0::mod);
static const mint w2 = w1 * mint(mint1::mod);
rep(i, n)
{
ull a = d0[i].v;
ull b = (d1[i].v + mint1::mod - a) * r01.v % mint1::mod;
ull c = ((d2[i].v + mint2::mod - a) * r02r12.v + (mint2::mod - b) * r12.v) % mint2::mod;
res[i].v = (a + b * w1.v + c * w2.v) % mint::mod;
}
return res;
}
} // namespace arbitrary_convolution
using arbitrary_convolution::multiply;
template <typename T>
vector<T> add_to_vector(vector<T> &z, T v)
{
z.push_back(v);
return z;
}
template <typename T, typename... Args>
vector<T> add_to_vector(vector<T> &z, T v, Args... args)
{
z.push_back(v);
add_to_vector<T>(z, args...);
return z;
}
template <typename T>
vector<T> make_vector(T v)
{
vector<T> z;
z.push_back(v);
return z;
}
template <typename T, typename... Args>
vector<T> make_vector(T v, Args... args)
{
vector<T> z;
z.push_back(v);
add_to_vector<T>(z, args...);
return z;
}
constexpr modinfo base{1000000007, 0};
using mint = modular<base>;
/* #endregion */
/**
Problem
*/
void solve()
{
ll p, Q;
cin >> p >> Q;
vll q(Q);
cin >> q;
// construct a
ll n = 2e6 + 11;
vc<mint> a(n, 0);
a[0] = 0;
a[1] = 1;
REP(i, 2, n)
{
a[i] = (a[i - 1] * p) + a[i - 2];
}
vc<mint> ret = arbitrary_convolution::multiply(a, a, true);
// dump(result);
REP(i, 0, Q)
{
cout << ret[q[i] - 2] << '\n';
}
}
/**
* エントリポイント.
* @return 0.
*/
int main()
{
solve();
return 0;
}
iiljj