結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | Chanyuh |
提出日時 | 2020-02-01 01:04:22 |
言語 | C++11 (gcc 11.4.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,508 bytes |
コンパイル時間 | 671 ms |
コンパイル使用メモリ | 102,360 KB |
実行使用メモリ | 8,016 KB |
最終ジャッジ日時 | 2024-09-17 15:05:45 |
合計ジャッジ時間 | 4,929 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | AC | 266 ms
8,016 KB |
ソースコード
#include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<complex> #include<bitset> #include<stack> #include<unordered_map> #include<utility> #include<tuple> using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair<int, int> P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define Per(i,sta,n) for(int i=n-1;i>=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; typedef complex<ld> Point; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair<ll, ll> LP; template<int mod> struct ModInt { long long x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long p) const{ int a = x; if (p==0) return 1; if (p==1) return ModInt(a); if (p%2==1) return (ModInt(a)*ModInt(a)).power(p/2)*ModInt(a); else return (ModInt(a)*ModInt(a)).power(p/2); } ModInt power(const ModInt p) const{ return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt<mod> &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt<mod> &a) { long long x; is >> x; a = ModInt<mod>(x); return (is); } }; using modint = ModInt<mod>; int n=200001,Q; modint b[200010],p,S[200010],q[200010]; void solve(){ cin >> p; b[0]=2;b[1]=p; Rep(i,2,n){ b[i]=p*b[i-1]+b[i-2]; } S[0]=b[0];S[1]=(modint)2*b[1]; Rep(i,2,n){ S[i]=(modint)2*b[i]-S[i-2]; } cin >> Q; modint inv=(p*p+4).inverse(); rep(i,Q){ int q;cin >> q;q-=2;modint q_=q; //cout << b[q] << endl; //cout << S[q] << endl; cout << inv*((q_+(modint)1)*b[q]-S[q]) << endl; } } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }