結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| ユーザー |
akakimidori
|
| 提出日時 | 2020-02-01 02:29:46 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 719 ms / 2,000 ms |
| コード長 | 6,854 bytes |
| コンパイル時間 | 14,632 ms |
| コンパイル使用メモリ | 376,600 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-17 20:55:30 |
| 合計ジャッジ時間 | 27,334 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 |
ソースコード
// ---------- begin ModInt ----------
const MOD: u32 = 1_000_000_007;
#[derive(Clone, Copy)]
struct ModInt(u32);
impl std::ops::Add for ModInt {
type Output = ModInt;
fn add(self, rhs: ModInt) -> Self::Output {
let mut d = self.0 + rhs.0;
if d >= MOD {
d -= MOD;
}
ModInt(d)
}
}
impl std::ops::AddAssign for ModInt {
fn add_assign(&mut self, rhs: ModInt) {
*self = *self + rhs;
}
}
impl std::ops::Sub for ModInt {
type Output = ModInt;
fn sub(self, rhs: ModInt) -> Self::Output {
let mut d = self.0 + MOD - rhs.0;
if d >= MOD {
d -= MOD;
}
ModInt(d)
}
}
impl std::ops::SubAssign for ModInt {
fn sub_assign(&mut self, rhs: ModInt) {
*self = *self - rhs;
}
}
impl std::ops::Mul for ModInt {
type Output = ModInt;
fn mul(self, rhs: ModInt) -> Self::Output {
ModInt((self.0 as u64 * rhs.0 as u64 % MOD as u64) as u32)
}
}
impl std::ops::MulAssign for ModInt {
fn mul_assign(&mut self, rhs: ModInt) {
*self = *self * rhs;
}
}
impl std::ops::Neg for ModInt {
type Output = ModInt;
fn neg(self) -> Self::Output {
ModInt(if self.0 == 0 {0} else {MOD - self.0})
}
}
impl std::fmt::Display for ModInt {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl std::str::FromStr for ModInt {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
#[allow(dead_code)]
impl ModInt {
pub fn new(n: u32) -> ModInt {
ModInt(n % MOD)
}
pub fn zero() -> ModInt {
ModInt(0)
}
pub fn one() -> ModInt {
ModInt(1)
}
pub fn pow(self, mut n: u32) -> ModInt {
let mut t = ModInt::one();
let mut s = self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(self) -> ModInt {
assert!(self.0 > 0);
self.pow(MOD - 2)
}
}
// ---------- end ModInt ----------
// ---------- begin Matrix ----------
#[allow(dead_code)]
mod matrix {
use std::ops::{Add, Mul};
pub trait SemiRing: Add<Output = Self> + Mul<Output = Self> + Copy {
fn zero() -> Self;
fn one() -> Self;
}
pub const SIZE: usize = 4;
#[derive(Clone)]
pub struct SquareMatrix<T: SemiRing> {
buf: [[T; SIZE]; SIZE],
}
impl<T: SemiRing> SquareMatrix<T> {
pub fn zero() -> Self {
let z = T::zero();
SquareMatrix {
buf: [[z; SIZE]; SIZE],
}
}
pub fn identity() -> Self {
let mut m = Self::zero();
for i in 0..SIZE {
m.buf[i][i] = T::one();
}
m
}
pub fn set_at(&mut self, i: usize, j: usize, v: T) {
self.buf[i][j] = v;
}
pub fn get_at(&self, i: usize, j: usize) -> T {
self.buf[i][j]
}
pub fn matmul(&self, rhs: &Self) -> Self {
let mut res = Self::zero();
for (x, a) in res.buf.iter_mut().zip(self.buf.iter()) {
for (a, b) in a.iter().zip(rhs.buf.iter()) {
for (x, b) in x.iter_mut().zip(b.iter()) {
*x = *x + *a * *b;
}
}
}
res
}
pub fn matadd(&self, rhs: &Self) -> Self {
let mut c = Self::zero();
for (c, (a, b)) in c.buf.iter_mut().zip(self.buf.iter().zip(rhs.buf.iter())) {
for (c, (a, b)) in c.iter_mut().zip(a.iter().zip(b.iter())) {
*c = *a + *b;
}
}
c
}
pub fn matpow(&self, mut n: usize) -> Self {
let mut t = Self::identity();
let mut s = self.clone();
while n > 0 {
if n & 1 == 1 {
t = t.matmul(&s);
}
s = s.matmul(&s);
n >>= 1;
}
t
}
}
}
// ---------- end Matrix ----------
//https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 より
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
//
use matrix::*;
use std::io::Write;
type Matrix = SquareMatrix::<ModInt>;
impl SemiRing for ModInt {
fn zero() -> Self {
ModInt::zero()
}
fn one() -> Self {
ModInt::one()
}
}
fn solve(p: ModInt, n: usize) -> ModInt {
let mut a = [ModInt::zero(); 4];
a[1] = ModInt::one();
for i in 2..4 {
a[i] = p * a[i - 1] + a[i - 2];
}
let mut b = [ModInt::zero(); 4];
for (i, &x) in a.iter().enumerate() {
for (j, &y) in a.iter().enumerate() {
if i + j < 4 {
b[i + j] += x * y;
}
}
}
let n = n - 2;
let mut mat = Matrix::zero();
for i in 1..4 {
mat.set_at(i, i - 1, ModInt::one());
}
mat.set_at(0, 0, ModInt(2) * p);
mat.set_at(0, 1, ModInt(2) - p * p);
mat.set_at(0, 2, -ModInt(2) * p);
mat.set_at(0, 3, -ModInt::one());
let mat = mat.matpow(n);
let mut ans = ModInt::zero();
for i in 0..4 {
ans += mat.get_at(3, i) * b[3 - i];
}
ans
}
fn run() {
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
input! {
p: ModInt,
q: usize,
a: [usize; q],
}
for a in a {
let ans = solve(p, a);
writeln!(out, "{}", ans).ok();
}
}
fn main() {
run();
}
akakimidori