結果

問題 No.978 Fibonacci Convolution Easy
ユーザー はまやんはまやんはまやんはまやん
提出日時 2020-02-01 09:17:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 24 ms / 2,000 ms
コード長 3,318 bytes
コンパイル時間 2,056 ms
コンパイル使用メモリ 200,824 KB
実行使用メモリ 11,392 KB
最終ジャッジ日時 2024-09-18 21:05:05
合計ジャッジ時間 3,125 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
11,204 KB
testcase_01 AC 12 ms
11,208 KB
testcase_02 AC 9 ms
11,216 KB
testcase_03 AC 23 ms
11,268 KB
testcase_04 AC 10 ms
11,368 KB
testcase_05 AC 7 ms
11,164 KB
testcase_06 AC 12 ms
11,268 KB
testcase_07 AC 18 ms
11,148 KB
testcase_08 AC 13 ms
11,324 KB
testcase_09 AC 18 ms
11,180 KB
testcase_10 AC 24 ms
11,204 KB
testcase_11 AC 10 ms
11,260 KB
testcase_12 AC 6 ms
11,392 KB
testcase_13 AC 11 ms
11,172 KB
testcase_14 AC 8 ms
11,208 KB
testcase_15 AC 12 ms
11,264 KB
testcase_16 AC 23 ms
11,180 KB
testcase_17 AC 23 ms
11,368 KB
testcase_18 AC 5 ms
11,232 KB
testcase_19 AC 5 ms
11,172 KB
testcase_20 AC 6 ms
11,304 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
typedef ModInt<1000000007> mint;
/*---------------------------------------------------------------------------------------------------
            ∧_∧
      ∧_∧  (´<_` )  Welcome to My Coding Space!
     ( ´_ゝ`) /  ⌒i     @hamayanhamayan0
    /   \     | |
    /   / ̄ ̄ ̄ ̄/  |
  __(__ニつ/     _/ .| .|____
     \/____/ (u ⊃
---------------------------------------------------------------------------------------------------*/














int N, p;
mint a[2010101];
//---------------------------------------------------------------------------------------------------
void _main() {
	cin >> N >> p;

	a[1] = 0;
	a[2] = 1;
	rep(i, 3, N + 1) a[i] = a[i - 1] * p + a[i - 2];

	mint sm = 0;
	mint ans = 0;
	rep(i, 1, N + 1) {
		sm += a[i];
		ans += sm * a[i];
	}
	cout << ans << endl;
}





0