結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | はまやんはまやん |
提出日時 | 2020-02-01 10:29:53 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,015 ms / 2,000 ms |
コード長 | 13,462 bytes |
コンパイル時間 | 2,738 ms |
コンパイル使用メモリ | 222,460 KB |
実行使用メモリ | 75,992 KB |
最終ジャッジ日時 | 2024-09-18 19:48:03 |
合計ジャッジ時間 | 22,931 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 973 ms
75,784 KB |
testcase_01 | AC | 975 ms
75,856 KB |
testcase_02 | AC | 970 ms
75,820 KB |
testcase_03 | AC | 987 ms
75,932 KB |
testcase_04 | AC | 968 ms
75,808 KB |
testcase_05 | AC | 966 ms
75,764 KB |
testcase_06 | AC | 993 ms
75,992 KB |
testcase_07 | AC | 983 ms
75,864 KB |
testcase_08 | AC | 984 ms
75,780 KB |
testcase_09 | AC | 979 ms
75,828 KB |
testcase_10 | AC | 1,015 ms
75,776 KB |
testcase_11 | AC | 983 ms
75,792 KB |
testcase_12 | AC | 1,014 ms
75,820 KB |
testcase_13 | AC | 989 ms
75,824 KB |
testcase_14 | AC | 967 ms
75,868 KB |
testcase_15 | AC | 960 ms
75,808 KB |
testcase_16 | AC | 953 ms
75,896 KB |
ソースコード
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<b;i++) #define rrep(i,a,b) for(int i=a;i>=b;i--) #define fore(i,a) for(auto &i:a) #define all(x) (x).begin(),(x).end() //#pragma GCC optimize ("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60; template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } //--------------------------------------------------------------------------------------------------- #ifdef _MSC_VER #pragma push_macro("long") #undef long #ifdef _WIN32 inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; } inline unsigned int __builtin_clz(unsigned int x) { unsigned long r; _BitScanReverse(&r, x); return 31 - r; } inline unsigned int __builtin_ffs(unsigned int x) { unsigned long r; return _BitScanForward(&r, x) ? r + 1 : 0; } inline unsigned int __builtin_popcount(unsigned int x) { return __popcnt(x); } inline unsigned int __lg(int __n) { return sizeof(int) * 8 - 1 - __builtin_clz(__n); } #ifdef _WIN64 inline unsigned long long __builtin_ctzll(unsigned long long x) { unsigned long r; _BitScanForward64(&r, x); return r; } inline unsigned long long __builtin_clzll(unsigned long long x) { unsigned long r; _BitScanReverse64(&r, x); return 63 - r; } inline unsigned long long __builtin_ffsll(unsigned long long x) { unsigned long r; return _BitScanForward64(&r, x) ? r + 1 : 0; } inline unsigned long long __builtin_popcountll(unsigned long long x) { return __popcnt64(x); } #else inline unsigned int hidword(unsigned long long x) { return static_cast<unsigned int>(x >> 32); } inline unsigned int lodword(unsigned long long x) { return static_cast<unsigned int>(x & 0xFFFFFFFF); } inline unsigned long long __builtin_ctzll(unsigned long long x) { return lodword(x) ? __builtin_ctz(lodword(x)) : __builtin_ctz(hidword(x)) + 32; } inline unsigned long long __builtin_clzll(unsigned long long x) { return hidword(x) ? __builtin_clz(hidword(x)) : __builtin_clz(lodword(x)) + 32; } inline unsigned long long __builtin_ffsll(unsigned long long x) { return lodword(x) ? __builtin_ffs(lodword(x)) : hidword(x) ? __builtin_ffs(hidword(x)) + 32 : 0; } inline unsigned long long __builtin_popcountll(unsigned long long x) { return __builtin_popcount(lodword(x)) + __builtin_popcount(hidword(x)); } #endif // _WIN64 #endif // _WIN32 #pragma pop_macro("long") #endif // _MSC_VER template<class t> using vc = vector<t>; template<class t> using vvc = vc<vc<t>>; using pi = pair<int, int>; using vi = vc<int>; using uint = unsigned; using ull = unsigned long long; #define si(x) int(x.size()) struct modinfo { uint mod, root; }; template<modinfo const& ref> struct modular { static constexpr uint const& mod = ref.mod; static modular root() { return modular(ref.root); } uint v; //modular(initializer_list<uint>ls):v(*ls.bg){} modular(ll vv = 0) { s(vv % mod + mod); } modular& s(uint vv) { v = vv < mod ? vv : vv - mod; return *this; } modular operator-()const { return modular() - *this; } modular& operator+=(const modular& rhs) { return s(v + rhs.v); } modular& operator-=(const modular& rhs) { return s(v + mod - rhs.v); } modular& operator*=(const modular& rhs) { v = ull(v) * rhs.v % mod; return *this; } modular& operator/=(const modular& rhs) { return *this *= rhs.inv(); } modular operator+(const modular& rhs)const { return modular(*this) += rhs; } modular operator-(const modular& rhs)const { return modular(*this) -= rhs; } modular operator*(const modular& rhs)const { return modular(*this) *= rhs; } modular operator/(const modular& rhs)const { return modular(*this) /= rhs; } modular pow(int n)const { modular res(1), x(*this); while (n) { if (n & 1)res *= x; x *= x; n >>= 1; } return res; } modular inv()const { return pow(mod - 2); } /*modular inv()const{ int x,y; int g=extgcd(v,mod,x,y); assert(g==1); if(x<0)x+=mod; return modular(x); }*/ friend modular operator+(int x, const modular& y) { return modular(x) + y; } friend modular operator-(int x, const modular& y) { return modular(x) - y; } friend modular operator*(int x, const modular& y) { return modular(x) * y; } friend modular operator/(int x, const modular& y) { return modular(x) / y; } friend ostream& operator<<(ostream& os, const modular& m) { return os << m.v; } friend istream& operator>>(istream& is, modular& m) { ll x; is >> x; m = modular(x); return is; } bool operator<(const modular& r)const { return v < r.v; } bool operator==(const modular& r)const { return v == r.v; } bool operator!=(const modular& r)const { return v != r.v; } explicit operator bool()const { return v; } }; #define USE_FMT /* //998244353 const mint prim_root=3; //in-place fft //size of input must be a power of 2 void inplace_fmt(vector<mint>&f,const bool inv){ const int n=f.size(); const mint root=inv?prim_root.inv():prim_root; vc<mint> g(n); for(int b=n/2;b>=1;b/=2){ mint w=root.pow((mint::base-1)/(n/b)),p=1; for(int i=0;i<n;i+=b*2){ rep(j,b){ f[i+j+b]*=p; g[i/2+j]=f[i+j]+f[i+b+j]; g[n/2+i/2+j]=f[i+j]-f[i+b+j]; } p*=w; } swap(f,g); } if(inv)rep(i,n) f[i]*=inv[n]; }*/ //size of input must be a power of 2 //output of forward fmt is bit-reversed //output elements are in the range [0,mod*4) //input of inverse fmt should be bit-reversed template<class mint> void inplace_fmt(const int n, mint* const f, bool inv) { static constexpr uint mod = mint::mod; static constexpr uint mod2 = mod * 2; static const int L = 30; static mint g[L], ig[L], p2[L]; if (g[0].v == 0) { rep(i, 0, L) { mint w = -mint::root().pow(((mod - 1) >> (i + 2)) * 3); g[i] = w; ig[i] = w.inv(); p2[i] = mint(1 << i).inv(); } } if (!inv) { int b = n; if (b >>= 1) {//input:[0,mod) rep(i, 0, b) { uint x = f[i + b].v; f[i + b].v = f[i].v + mod - x; f[i].v += x; } } if (b >>= 1) {//input:[0,mod*2) mint p = 1; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } while (b) { if (b >>= 1) {//input:[0,mod*3) mint p = 1; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } if (b >>= 1) {//input:[0,mod*4) mint p = 1; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j].v = (f[j].v < mod2 ? f[j].v : f[j].v - mod2); f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } } } else { int b = 1; if (b < n / 2) {//input:[0,mod) mint p = 1; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { ull x = f[j].v + mod - f[j + b].v; f[j].v += f[j + b].v; f[j + b].v = x * p.v % mod; } p *= ig[__builtin_ctz(++k)]; } b <<= 1; } for (; b < n / 2; b <<= 1) { mint p = 1; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b / 2) {//input:[0,mod*2) ull x = f[j].v + mod2 - f[j + b].v; f[j].v += f[j + b].v; f[j].v = (f[j].v) < mod2 ? f[j].v : f[j].v - mod2; f[j + b].v = x * p.v % mod; } rep(j, i + b / 2, i + b) {//input:[0,mod) ull x = f[j].v + mod - f[j + b].v; f[j].v += f[j + b].v; f[j + b].v = x * p.v % mod; } p *= ig[__builtin_ctz(++k)]; } } if (b < n) {//input:[0,mod*2) rep(i, 0, b) { uint x = f[i + b].v; f[i + b].v = f[i].v + mod2 - x; f[i].v += x; } } mint z = p2[__lg(n)]; rep(i, 0, n)f[i] *= z; } } template<class mint> void inplace_fmt(vector<mint>& f, bool inv) { inplace_fmt(si(f), f.data(), inv); } template<class mint> void half_fmt(const int n, mint* const f) { static constexpr uint mod = mint::mod; static constexpr uint mod2 = mod * 2; static const int L = 30; static mint g[L], h[L]; if (g[0].v == 0) { rep(i, 0, L) { g[i] = -mint::root().pow(((mod - 1) >> (i + 2)) * 3); h[i] = mint::root().pow((mod - 1) >> (i + 2)); } } int b = n; int lv = 0; if (b >>= 1) {//input:[0,mod) mint p = h[lv++]; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } if (b >>= 1) {//input:[0,mod*2) mint p = h[lv++]; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } while (b) { if (b >>= 1) {//input:[0,mod*3) mint p = h[lv++]; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } if (b >>= 1) {//input:[0,mod*4) mint p = h[lv++]; for (int i = 0, k = 0; i < n; i += b * 2) { rep(j, i, i + b) { uint x = (f[j + b] * p).v; f[j].v = (f[j].v < mod2 ? f[j].v : f[j].v - mod2); f[j + b].v = f[j].v + mod - x; f[j].v += x; } p *= g[__builtin_ctz(++k)]; } } } } template<class mint> void half_fmt(vector<mint>& f) { half_fmt(si(f), f.data()); } /* template<class mint> vc<mint> multiply(vc<mint> x,const vc<mint>&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; x.resize(s);inplace_fmt(x,false); if(!same){ vc<mint> z(s); rep(i,si(y))z[i]=y[i]; inplace_fmt(z,false); rep(i,s)x[i]*=z[i]; }else{ rep(i,s)x[i]*=x[i]; } inplace_fmt(x,true);x.resize(n); return x; }*/ //59501818244292734739283969-1=5.95*10^25 までの値を正しく計算 //最終的な列の大きさが 2^24 までなら動く //最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?) //VERIFY: yosupo namespace arbitrary_convolution { constexpr modinfo base0{ 167772161,3 };//2^25 * 5 + 1 constexpr modinfo base1{ 469762049,3 };//2^26 * 7 + 1 constexpr modinfo base2{ 754974721,11 };//2^24 * 45 + 1 //constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1 //constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1 //constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1 using mint0 = modular<base0>; using mint1 = modular<base1>; using mint2 = modular<base2>; template<class t, class mint> vc<t> sub(const vc<mint>& x, const vc<mint>& y, bool same = false) { int n = si(x) + si(y) - 1; int s = 1; while (s < n)s *= 2; vc<t> z(s); rep(i, 0, si(x))z[i] = x[i].v; inplace_fmt(z, false); if (!same) { vc<t> w(s); rep(i, 0, si(y))w[i] = y[i].v; inplace_fmt(w, false); rep(i, 0, s)z[i] *= w[i]; } else { rep(i, 0, s)z[i] *= z[i]; } inplace_fmt(z, true); z.resize(n); return z; } constexpr modinfo base{ 1000000007,0 }; using mint = modular<base>; vc<mint> multiply(const vc<mint>& x, const vc<mint>& y, bool same = false) { auto d0 = sub<mint0>(x, y, same); auto d1 = sub<mint1>(x, y, same); auto d2 = sub<mint2>(x, y, same); int n = si(d0); vc<mint> res(n); static const mint1 r01 = mint1(mint0::mod).inv(); static const mint2 r02 = mint2(mint0::mod).inv(); static const mint2 r12 = mint2(mint1::mod).inv(); static const mint2 r02r12 = r02 * r12; static const mint w1 = mint(mint0::mod); static const mint w2 = w1 * mint(mint1::mod); rep(i, 0, n) { ull a = d0[i].v; ull b = (d1[i].v + mint1::mod - a) * r01.v % mint1::mod; ull c = ((d2[i].v + mint2::mod - a) * r02r12.v + (mint2::mod - b) * r12.v) % mint2::mod; res[i].v = (a + b * w1.v + c * w2.v) % mint::mod; } return res; } } using arbitrary_convolution::multiply; /*--------------------------------------------------------------------------------------------------- ∧_∧ ∧_∧ (´<_` ) Welcome to My Coding Space! ( ´_ゝ`) / ⌒i @hamayanhamayan0 / \ | | / / ̄ ̄ ̄ ̄/ | __(__ニつ/ _/ .| .|____ \/____/ (u ⊃ ---------------------------------------------------------------------------------------------------*/ int p, Q; int mo = 1000000007; const int ma = 2010101; //--------------------------------------------------------------------------------------------------- void _main() { cin >> p; vector<arbitrary_convolution::mint> v(ma, 0); v[2] = 1; rep(i, 3, ma) v[i] = (v[i - 1] * p + v[i - 2]); auto ans = multiply(v, v, true); cin >> Q; rep(_, 0, Q) { int q; cin >> q; printf("%u\n", ans[q].v); } }