結果
| 問題 |
No.977 アリス仕掛けの摩天楼
|
| ユーザー |
jell
|
| 提出日時 | 2020-02-01 16:24:59 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 37 ms / 2,000 ms |
| コード長 | 10,014 bytes |
| コンパイル時間 | 2,186 ms |
| コンパイル使用メモリ | 165,280 KB |
| 最終ジャッジ日時 | 2025-01-08 21:44:06 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
/* preprocessor start */
#ifdef LOCAL
//*
#define _GLIBCXX_DEBUG // gcc
/*/
#define _LIBCPP_DEBUG 0 // clang
//*/
#define __clock__
// #define __buffer_check__
#else
#pragma GCC optimize("Ofast")
/*
#define _GLIBCXX_DEBUG // gcc
/*/
// #define _LIBCPP_DEBUG 0 // clang
//*/
// #define __buffer_check__
// #define NDEBUG
#endif
#define __precision__ 10
#define iostream_untie true
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
/* preprocessor end */
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
namespace setting
{
using namespace std;
using namespace chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; }
void buffer_check() { char bufc; if(cin >> bufc) cerr << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
struct setupper
{
setupper()
{
if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr)) cerr << fixed << setprecision(__precision__);
#endif
#ifdef LOCAL
cerr << "\n----- stderr at LOCAL -----\n\n";
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
#ifdef __clock__
start_time = system_clock::now();
atexit(print_elapsed_time);
#endif
}
} __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
#include "C:\Users\euler\OneDrive\Documents\Competitive_Programming\Library\local\Clock.hpp"
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
#ifdef LOCAL
#include "C:\Users\euler\OneDrive\Documents\Competitive_Programming\Library\local\Dump.hpp"
#else
#define dump(...) ((void)0)
#endif
/* function utility start */
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
/* functon utility end */
/* using alias start */
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
/* using alias end */
/* library start */
// #line 2 "Union_find.hpp"
#ifndef Union_find_hpp
#define Union_find_hpp
#include <cassert>
#include <cstdint>
#include <numeric>
#include <vector>
class union_find
{
const size_t n;
std::vector<int> link;
bool *const cyc, *const clr, *const flip;
size_t comp, isol;
bool bipart;
public:
explicit union_find(const size_t _n) : n(_n), link(n, -1), cyc(new bool[n]{}), clr(new bool[n]{}), flip(new bool[n]{}), comp(n), isol(n), bipart(true) {}
~union_find() { delete[] cyc; delete[] clr; delete[] flip; }
size_t find(const size_t x)
{
assert(x < n);
if(link[x] < 0) return x;
const size_t r = find(link[x]);
if(flip[link[x]]) clr[x] = !clr[x], flip[x] = !flip[x];
return link[x] = r;
}
size_t size() const { return n; }
size_t size(const size_t x) { return -link[find(x)]; }
size_t count() const { return comp; }
size_t isolated() const { return isol; }
bool color(const size_t x) { return find(x), clr[x]; }
bool cyclic(const size_t x) { return cyc[find(x)]; }
bool same(const size_t x, const size_t y) { return find(x) == find(y); }
bool bipartite() const { return bipart; }
bool unite(size_t x, size_t y)
{
const size_t _x = find(x), _y = find(y);
const bool f = clr[x] == clr[y];
x = _x, y = _y;
if(x == y)
{
bipart &= !f;
cyc[x] = true;
return false;
}
if(link[x] > link[y]) std::swap(x, y);
if(link[x] == -1) --isol;
if(link[y] == -1) --isol;
link[x] += link[y], link[y] = x;
cyc[x] = cyc[x] || cyc[y];
if(f) clr[y] = !clr[y], flip[y] = !flip[y];
--comp;
return true;
}
}; // class union_find
#endif
/* library end */
/* The main code follows. */
struct solver
{
solver()
{
input(int,n);
union_find uf(n);
vector deg(n,0);
for(int i=1; i<n; ++i)
{
int a,b; cin>>a>>b;
uf.unite(a,b);
deg[a]++,deg[b]++;
}
if(uf.count()!=1 && (uf.count()>2 || *min_element(__all(deg))!=0 || *max_element(__all(deg))!=2))
{
cout << "Alice" << "\n";
return;
}
cout << "Bob" << "\n";
}
}; // struct solver
int main(int argc, char *argv[])
{
u32 t; // loop count
#ifdef LOCAL
t = 1;
#else
t = 1; // single test case
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--)
{
solver();
}
}
jell