結果
| 問題 | No.766 金魚すくい | 
| コンテスト | |
| ユーザー |  maspy | 
| 提出日時 | 2020-02-04 09:45:11 | 
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 620 ms / 1,500 ms | 
| コード長 | 1,555 bytes | 
| コンパイル時間 | 209 ms | 
| コンパイル使用メモリ | 12,928 KB | 
| 実行使用メモリ | 54,924 KB | 
| 最終ジャッジ日時 | 2024-09-19 20:29:53 | 
| 合計ジャッジ時間 | 26,050 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 42 | 
ソースコード
import sys
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
import numpy as np
MOD = 10**9 + 7
def cumprod(A, MOD = MOD):
    L = len(A); Lsq = int(L**.5+1)
    A = np.resize(A, Lsq**2).reshape(Lsq,Lsq)
    for n in range(1,Lsq):
        A[:,n] *= A[:,n-1]; A[:,n] %= MOD
    for n in range(1,Lsq):
        A[n] *= A[n-1,-1]; A[n] %= MOD
    return A.ravel()[:L]
def make_fact(U, MOD = MOD):
    x = np.arange(U, dtype = np.int64); x[0] = 1
    fact = cumprod(x, MOD)
    x = np.arange(U, 0, -1, dtype=np.int64); x[0] = pow(int(fact[-1]), MOD-2, MOD)
    fact_inv = cumprod(x, MOD)[::-1]
    fact.flags.writeable = False
    fact_inv.flags.writeable = False
    return fact,fact_inv
def make_power(a, L, MOD=MOD):
    B = L.bit_length()
    x = np.empty((1<<B), np.int64)
    x[0] = 1
    for n in range(B):
        x[1<<n:1<<(n+1)] = x[:1<<n] * a % MOD
        a *= a; a %= MOD
    x = x[:L]
    x.flags.writeable = False
    return x
N, M, P = map(int, readline().split())
V = np.fromstring(read(), np.int64, sep=' ')
fact, fact_inv = make_fact(N + M)
P *= pow(100, MOD-2, MOD)
Q = 1 - P
P %= MOD
Q %= MOD
power_Q = make_power(Q, N+M)
comb = fact[M-1:N+M-1] * fact_inv[0:N] % MOD * fact_inv[M-1] % MOD
prob = np.empty(N+1, dtype=np.int64)
prob[:N] = comb * power_Q[:N] % MOD * pow(P, M, MOD) % MOD
prob[-1] = (1 - prob[:-1].sum()) % MOD
V.sort()
V = V[::-1]
Vcum = np.empty(N+1, np.int64)
Vcum[0] = 0
Vcum[1:] = V.cumsum() % MOD
answer = (Vcum * prob % MOD).sum() % MOD
print(answer)
            
            
            
        