結果
問題 | No.8056 量子コンピュータで素因数分解 Easy |
ユーザー | 👑 emthrm |
提出日時 | 2020-02-05 04:14:16 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,904 bytes |
コンパイル時間 | 3,370 ms |
コンパイル使用メモリ | 232,912 KB |
実行使用メモリ | 43,516 KB |
平均クエリ数 | 0.04 |
最終ジャッジ日時 | 2024-06-10 07:16:24 |
合計ジャッジ時間 | 6,824 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | TLE | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; // "base" must be a power of 10. const int lg10_base = 9, base = static_cast<int>(round(pow(10, lg10_base))); struct BigInt { int sign; vector<int> dat; BigInt(ll val = 0) { *this = val; } BigInt(const string &s) { *this = s; } vector<ll> convert_base(int new_lg10_base, ll new_base) const { // assert(new_base == static_cast<int>(round(pow(10, new_lg10_base)))) int mx_base = max(lg10_base, new_lg10_base); vector<ll> p(mx_base + 1, 1); FOR(i, 1, mx_base + 1) p[i] = p[i - 1] * 10; vector<ll> res; ll now_val = 0; int now_lg10_base = 0; for (int e : dat) { now_val += p[now_lg10_base] * e; now_lg10_base += lg10_base; while (now_lg10_base >= new_lg10_base) { res.emplace_back(now_val % new_base); now_val /= new_base; now_lg10_base -= new_lg10_base; } } res.emplace_back(now_val); while (!res.empty() && res.back() == 0) res.pop_back(); return res; } int digit_sum() { assert(sign == 1); string s = to_string(); int res = 0; for (char c : s) res += c - '0'; return res; } int length() { if (dat.empty()) return 1; int res = lg10_base * (dat.size() - 1); int tmp = dat.back(); while (tmp > 0) { ++res; tmp /= 10; } return res; } BigInt pow(BigInt exponent) { BigInt res = 1, tmp = *this; while (exponent > 0) { if (exponent.dat[0] & 1) res *= tmp; tmp *= tmp; exponent /= 2; } return res; } ll to_llong() const { assert(*this >= LLONG_MIN && *this <= LLONG_MAX); ll res = 0; for (int i = static_cast<int>(dat.size()) - 1; i >= 0; --i) (res *= base) += dat[i]; return res; } string to_string() { stringstream ss; ss << *this; string res; ss >> res; return res; } void trim() { while (!dat.empty() && dat.back() == 0) dat.pop_back(); if (dat.empty()) sign = 1; } BigInt &operator=(ll val) { sign = 1; if (val < 0) { sign = -1; val *= -1;} dat.clear(); for (; val > 0; val /= base) dat.emplace_back(val % base); return *this; } BigInt &operator=(const string &s) { sign = 1; dat.clear(); if (!s.empty()) { int tail = 0; if (s[tail] == '-' || s[tail] == '+') { if (s[tail] == '-') sign = -1; ++tail; } for (int i = s.length() - 1; i >= tail; i -= lg10_base) { int val = 0; for (int j = max(tail, i - lg10_base + 1); j <= i; ++j) val = val * 10 + (s[j] - '0'); dat.emplace_back(val); } } trim(); return *this; } BigInt &operator=(const BigInt &x) { sign = x.sign; dat.resize(x.dat.size()); copy(ALL(x.dat), dat.begin()); return *this; } BigInt &operator+=(const BigInt &x) { if (sign == x.sign) { bool carry = false; for (int i = 0; i < max(dat.size(), x.dat.size()) || carry; ++i) { if (i == dat.size()) dat.emplace_back(0); dat[i] += (i < x.dat.size() ? x.dat[i] : 0) + carry; carry = dat[i] >= base; if (carry) dat[i] -= base; } } else { *this -= -x; } return *this; } BigInt &operator-=(const BigInt &x) { if (sign == x.sign) { BigInt abs_this = *this, abs_x = x; abs_this.sign = 1; abs_x.sign = 1; if (abs_this >= abs_x) { bool carry = false; for (int i = 0; i < dat.size() || carry; ++i) { dat[i] -= (i < x.dat.size() ? x.dat[i] : 0) + carry; carry = dat[i] < 0; if (carry) dat[i] += base; } trim(); } else { *this = -(x - *this); } } else { *this += -x; } return *this; } BigInt &operator*=(const BigInt &x) { const int new_log10_base = 6, new_base = 1000000; vector<ll> this6 = convert_base(new_log10_base, new_base), x6 = x.convert_base(new_log10_base, new_base); vector<ll> res = karatsuba(this6, 0, this6.size(), x6, 0, x6.size()); REP(i, res.size()) { ll quo = res[i] / new_base; if (quo > 0) { if (i + 1 == res.size()) res.emplace_back(0); res[i + 1] += quo; } res[i] %= new_base; } string s = (sign * x.sign == 1 ? "+" : "-"); for (int i = static_cast<int>(res.size()) - 1; i >= 0; --i) { string tmp = std::to_string(res[i]); REP(_, new_log10_base - tmp.size()) s += '0'; s += tmp; } return *this = s; } BigInt &operator/=(int x) { return *this = divide(x).first; } BigInt &operator/=(const BigInt &x) { return *this = divide(x).first; } BigInt &operator%=(int x) { return *this = divide(x).second; } BigInt &operator%=(const BigInt &x) { return *this = divide(x).second; } bool operator==(const BigInt &x) const { if (sign != x.sign || dat.size() != x.dat.size()) return false; int sz = dat.size(); REP(i, sz) if (dat[i] != x.dat[i]) return false; return true; } bool operator!=(const BigInt &x) const { return !(*this == x); } bool operator<(const BigInt &x) const { if (sign != x.sign) return sign < x.sign; if (dat.size() != x.dat.size()) return sign * dat.size() < x.sign * x.dat.size(); for (int i = static_cast<int>(dat.size()) - 1; i >= 0; --i) { if (dat[i] != x.dat[i]) return dat[i] * sign < x.dat[i] * x.sign; } return false; } bool operator<=(const BigInt &x) const { return !(x < *this); } bool operator>(const BigInt &x) const { return x < *this; } bool operator>=(const BigInt &x) const { return !(*this < x); } BigInt &operator++() { return *this += 1; } BigInt operator++(int) { BigInt res = *this; ++*this; return res; } BigInt &operator--() { return *this -= 1; } BigInt operator--(int) { BigInt res = *this; --*this; return res; } BigInt operator+() const { return *this; } BigInt operator-() const { BigInt res = *this; res.sign *= -1; return res; } BigInt operator+(const BigInt &x) const { return BigInt(*this) += x; } BigInt operator-(const BigInt &x) const { return BigInt(*this) -= x; } BigInt operator*(const BigInt &x) const { return BigInt(*this) *= x; } BigInt operator/(int x) const { return BigInt(*this) /= x; } BigInt operator/(const BigInt &x) const { return BigInt(*this) /= x; } BigInt operator%(int x) const { return BigInt(*this) %= x; } BigInt operator%(const BigInt &x) const { return BigInt(*this) %= x; } friend ostream &operator<<(ostream &os, const BigInt &x) { if (x.sign == -1) os << '-'; os << (x.dat.empty() ? 0 : x.dat.back()); for (int i = static_cast<int>(x.dat.size()) - 2; i >= 0; --i) os << setw(lg10_base) << setfill('0') << x.dat[i]; return os; } friend istream &operator>>(istream &is, BigInt &x) { string s; is >> s; x = s; return is; } private: vector<ll> karatsuba(vector<ll> &a, int a_l, int a_r, vector<ll> &b, int b_l, int b_r) { int a_len = a_r - a_l, b_len = b_r - b_l; if (a_len < b_len) return karatsuba(b, b_l, b_r, a, a_l, a_r); vector<ll> res(a_len + b_len, 0); if (b_len <= 32) { FOR(i, a_l, a_r) FOR(j, b_l, b_r) res[(i - a_l) + (j - b_l)] += a[i] * b[j]; } else { int mid = (a_len + 1) / 2, n = min(a_len, mid); for (int i = a_l; i + mid < a_r; ++i) a[i] += a[i + mid]; for (int i = b_l; i + mid < b_r; ++i) b[i] += b[i + mid]; vector<ll> tmp = karatsuba(a, a_l, a_l + mid, b, b_l, b_l + n); REP(i, tmp.size()) res[mid + i] = tmp[i]; for (int i = a_l; i + mid < a_r; ++i) a[i] -= a[i + mid]; for (int i = b_l; i + mid < b_r; ++i) b[i] -= b[i + mid]; tmp = karatsuba(a, a_l, a_l + mid, b, b_l, b_l + n); REP(i, tmp.size()) { res[i] += tmp[i]; res[mid + i] -= tmp[i]; } tmp = karatsuba(a, a_l + mid, a_r, b, b_l + n, b_r); REP(i, tmp.size()) { res[mid + i] -= tmp[i]; res[(mid << 1) + i] += tmp[i]; } } while (!res.empty() && res.back() == 0) res.pop_back(); return res; } pair<BigInt, int> divide(int x) { // assert(!x.dat.empty()); BigInt dividend = *this; if (x < 0) { dividend.sign *= -1; x *= -1; } ll rem = 0; for (int i = static_cast<int>(dividend.dat.size()) - 1; i >= 0; --i) { ll tmp = rem * base + dividend.dat[i]; dividend.dat[i] = static_cast<int>(tmp / x); rem = tmp % x; } dividend.trim(); return {dividend, static_cast<int>(rem)}; } pair<BigInt, BigInt> divide(const BigInt &x) { // assert(!x.dat.empty()); int k = base / (x.dat.back() + 1); BigInt dividend = *this, divisor = x; dividend.sign = 1; divisor.sign = 1; dividend *= k; divisor *= k; BigInt quo, rem = 0; quo.dat.resize(dividend.dat.size()); int sz = divisor.dat.size(); for (int i = static_cast<int>(dividend.dat.size()) - 1; i >= 0; --i) { rem.dat.insert(rem.dat.begin(), dividend.dat[i]); quo.dat[i] = static_cast<int>(((sz < rem.dat.size() ? 1LL * rem.dat[sz] * base : 0) + (sz - 1 < rem.dat.size() ? rem.dat[sz - 1] : 0)) / divisor.dat.back()); rem -= divisor * quo.dat[i]; while (rem.sign == -1) { rem += divisor; --quo.dat[i]; } } quo.sign = sign * x.sign; rem.sign = sign; quo.trim(); rem.trim(); return {quo, rem / k}; } }; BigInt __gcd(BigInt a, BigInt b) { while (!b.dat.empty()) swap(a %= b, b); return a; } BigInt __lcm(const BigInt &a, const BigInt &b) { return a / __gcd(a, b) * b; } BigInt abs(const BigInt &x) { BigInt res = x; res.sign = 1; return res; } BigInt max(const BigInt &a, const BigInt &b) { return a < b ? b : a; } BigInt min(const BigInt &a, const BigInt &b) { return a < b ? a : b; } struct Xor128 { int rand() { unsigned t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); return static_cast<int>(w); } int rand(int ub) { int res = rand() % ub; return (res < 0 ? res + ub : res); } int rand(int lb, int ub) { return lb + rand(ub - lb); } ll randll() { unsigned long long res = static_cast<unsigned long long>(rand()) << 32; return static_cast<ll>(res | rand()); } ll randll(ll ub) { ll res = randll() % ub; return (res < 0 ? res + ub : res); } ll randll(ll lb, ll ub) { return lb + rand(ub - lb); } private: unsigned x = 123456789, y = 362436069, z = 521288629, w = static_cast<unsigned>(time(nullptr)); } xor128; // https://core.ac.uk/download/pdf/35426875.pdf int main() { BigInt n; cin >> n; int p = 0; BigInt tmp = 1; for (; tmp < n; ++p) tmp *= 2; BigInt a, r; while (true) { string s = ""; REP(_, p) s += '0' + xor128.rand(2); a = s; if (a >= n) continue; if (BigInt g = __gcd(a, n); g > 1) { cout << g << ' ' << n / g << endl; return 0; } cout << "? " << a << endl; cin >> r; if (r % 2 == 0 && r < 66439) { BigInt p = __gcd(BigInt(a).pow(r / 2) + 1, n), q = __gcd(BigInt(a).pow(r / 2) - 1, n); if (p == n || q == n) continue; cout << "! " << p << ' ' << q << endl; return 0; } } }