結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー 👑 tute7627tute7627
提出日時 2020-02-07 14:53:47
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 17,504 bytes
コンパイル時間 2,807 ms
コンパイル使用メモリ 198,056 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-18 17:47:11
合計ジャッジ時間 3,421 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;

#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD = 1e9+7;
//const ll MOD = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T>
void chmin(T &a,T b){if(a>b)a=b;}
template<typename T>
void chmax(T &a,T b){if(a<b)a=b;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>
void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T>
void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};
void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++)
{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};
template<typename T>
void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];
for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};
template<typename T>
vector<vector<T>>vec(ll x, ll y, T w){
  vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,0,-1,0,1,1,-1,-1};
vector<ll>dy={0,1,0,-1,1,-1,1,-1};
template<typename T>
vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>
auto make_v(size_t a,Ts... ts){
  return vector<decltype(make_v(ts...))>(a,make_v(ts...));
}
ostream &operator<<(ostream &os, pair<ll, ll>&p){
  return os << p.first << " " << p.second;
}  
constexpr int digits(int base) noexcept {
    return base <= 1 ? 0 : 1 + digits(base / 10);
}
using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx> roots = {{0, 0},
                     {1, 0}};

void ensure_capacity(int min_capacity) {
    for (int len = roots.size(); len < min_capacity; len *= 2) {
        for (int i = len >> 1; i < len; i++) {
            roots.emplace_back(roots[i]);
            double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
            roots.emplace_back(cos(angle), sin(angle));
        }
    }
}

void fft(vector<cpx> &z, bool inverse) {
    int n = z.size();
    assert((n & (n - 1)) == 0);
    ensure_capacity(n);
    for (unsigned i = 1, j = 0; i < n; i++) {
        int bit = n >> 1;
        for (; j >= bit; bit >>= 1)
            j -= bit;
        j += bit;
        if (i < j)
            swap(z[i], z[j]);
    }
    for (int len = 1; len < n; len <<= 1) {
        for (int i = 0; i < n; i += len * 2) {
            for (int j = 0; j < len; j++) {
                cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
                cpx u = z[i + j];
                cpx v = z[i + j + len] * root;
                z[i + j] = u + v;
                z[i + j + len] = u - v;
            }
        }
    }
    if (inverse)
        for (int i = 0; i < n; i++)
            z[i] /= n;
}

vector<int> multiply_bigint(const vector<int> &a, const vector<int> &b, int base) {
    int need = a.size() + b.size();
    int n = 1;
    while (n < need) n <<= 1;
    vector<cpx> p(n);
    for (size_t i = 0; i < n; i++) {
        p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
    }
    fft(p, false);
    // a[w[k]] = (p[w[k]] + conj(p[w[n-k]])) / 2
    // b[w[k]] = (p[w[k]] - conj(p[w[n-k]])) / (2*i)
    vector<cpx> ab(n);
    cpx r(0, -0.25);
    for (int i = 0; i < n; i++) {
        int j = (n - i) & (n - 1);
        ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
    }
    fft(ab, true);
    vector<int> result(need);
    long long carry = 0;
    for (int i = 0; i < need; i++) {
        long long d = (long long) (ab[i].real() + 0.5) + carry;
        carry = d / base;
        result[i] = d % base;
    }
    return result;
}

vector<int> multiply_mod(const vector<int> &a, const vector<int> &b, int m) {
    int need = a.size() + b.size() - 1;
    int n = 1;
    while (n < need) n <<= 1;
    vector<cpx> A(n);
    for (size_t i = 0; i < a.size(); i++) {
        int x = (a[i] % m + m) % m;
        A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
    }
    fft(A, false);

    vector<cpx> B(n);
    for (size_t i = 0; i < b.size(); i++) {
        int x = (b[i] % m + m) % m;
        B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
    }
    fft(B, false);

    vector<cpx> fa(n);
    vector<cpx> fb(n);
    for (int i = 0, j = 0; i < n; i++, j = n - i) {
        cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
        cpx a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
        cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
        cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
        fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
        fb[i] = a1 * b2 + a2 * b1;
    }

    fft(fa, true);
    fft(fb, true);
    vector<int> res(need);
    for (int i = 0; i < need; i++) {
        long long aa = (long long) (fa[i].real() + 0.5);
        long long bb = (long long) (fb[i].real() + 0.5);
        long long cc = (long long) (fa[i].imag() + 0.5);
        res[i] = (aa % m + (bb % m << 15) + (cc % m << 30)) % m;
    }
    return res;
}
constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);

constexpr int fft_base = 10'000; // fft_base^2 * n / fft_base_digits <= 10^15 for double
constexpr int fft_base_digits = digits(fft_base);

struct bigint {
    // value == 0 is represented by empty z
    vector<int> z; // digits

    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;

    bigint(long long v = 0) {
        *this = v;
    }

    bigint &operator=(long long v) {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int) (v % base));
        return *this;
    }

    bigint(const string &s) {
        read(s);
    }

    bigint &operator+=(const bigint &other) {
        if (sign == other.sign) {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        } else if (other != 0 /* prevent infinite loop */) {
            *this -= -other;
        }
        return *this;
    }

    friend bigint operator+(bigint a, const bigint &b) {
        a += b;
        return a;
    }

    bigint &operator-=(const bigint &other) {
        if (sign == other.sign) {
            if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            } else {
                *this = other - *this;
                this->sign = -this->sign;
            }
        } else {
            *this += -other;
        }
        return *this;
    }

    friend bigint operator-(bigint a, const bigint &b) {
        a -= b;
        return a;
    }

    bigint &operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long) z[i] * v + carry;
            carry = (int) (cur / base);
            z[i] = (int) (cur % base);
        }
        trim();
        return *this;
    }

    bigint operator*(int v) const {
        return bigint(*this) *= v;
    }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = (int) a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int) (((long long) s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }

    friend bigint sqrt(const bigint &a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--) {
            for (;; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base +
                            (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int) (((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2));
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint &v) const {
        return divmod(*this, v).first;
    }

    bigint operator%(const bigint &v) const {
        return divmod(*this, v).second;
    }

    bigint &operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long) base;
            z[i] = (int) (cur / v);
            rem = (int) (cur % v);
        }
        trim();
        return *this;
    }

    bigint operator/(int v) const {
        return bigint(*this) /= v;
    }

    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int) z.size() - 1; i >= 0; --i)
            m = (int) ((z[i] + m * (long long) base) % v);
        return m * sign;
    }

    bigint &operator*=(const bigint &v) {
        *this = *this * v;
        return *this;
    }

    bigint &operator/=(const bigint &v) {
        *this = *this / v;
        return *this;
    }

    bigint &operator%=(const bigint &v) {
        *this = *this % v;
        return *this;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int) z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const {
        return v < *this;
    }

    bool operator<=(const bigint &v) const {
        return !(v < *this);
    }

    bool operator>=(const bigint &v) const {
        return !(*this < v);
    }

    bool operator==(const bigint &v) const {
        return !(*this < v) && !(v < *this);
    }

    bool operator!=(const bigint &v) const {
        return *this < v || v < *this;
    }

    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const {
        return z.empty();
    }

    friend bigint operator-(bigint v) {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }

    bigint abs() const {
        return sign == 1 ? *this : -*this;
    }

    long long longValue() const {
        long long res = 0;
        for (int i = (int) z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) {
        return b.isZero() ? a : gcd(b, a % b);
    }

    friend bigint lcm(const bigint &a, const bigint &b) {
        return a / gcd(a, b) * b;
    }

    void read(const string &s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int) s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int) v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a) {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int) cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    bigint operator*(const bigint &v) const {
        if (min(z.size(), v.z.size()) < 150)
            return mul_simple(v);
        bigint res;
        res.sign = sign * v.sign;
        res.z = multiply_bigint(convert_base(z, base_digits, fft_base_digits),
                                convert_base(v.z, base_digits, fft_base_digits), fft_base);
        res.z = convert_base(res.z, fft_base_digits, base_digits);
        res.trim();
        return res;
    }

    bigint mul_simple(const bigint &v) const {
        bigint res;
        res.sign = sign * v.sign;
        res.z.resize(z.size() + v.z.size());
        for (int i = 0; i < z.size(); ++i)
            if (z[i])
                for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
                    long long cur = res.z[i + j] + (long long) z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
                    carry = (int) (cur / base);
                    res.z[i + j] = (int) (cur % base);
                }
        res.trim();
        return res;
    }
};

mt19937 rng(1);

bigint random_bigint(int n) {
    string s;
    for (int i = 0; i < n; i++) {
        s += uniform_int_distribution<int>('0', '9')(rng);
    }
    return bigint(s);
}
using ull = unsigned long long;
template<typename T>
struct FastPrime{
  T modpow(T p, ull q, ull mod){
    T tmp = p % mod, ret = 1;
    while(q){
      if(q&1)ret = ret * tmp % mod; 
      q >>= 1;
      tmp = tmp * tmp % mod;
    }
    return ret;
  }
  vector<T>v32={2,7,61};
  bool isPrime32(ull n){
    ull d = n - 1;
    while(!(d&1))d >>= 1;
    for(auto a:v32){
      if(T(n) <= a)break;
      T now = modpow(a, d, n);
      ull q = d;
      while(q != n - 1 && now != T(1) && now != T(n - 1)){
        q <<= 1;
        now = now * now % n;
      }
      if(!(q&1) && now != T(n-1))return false;
    }
    return true;
  }
  vector<T>v64={2,325,9375,28178,450775,9780504,1795265022};
  bool isPrime64(ull n){
    ull d = n - 1;
    while(!(d&1))d >>= 1;
    for(auto a:v64){
      if(T(n) <= a)break;
      T now = modpow(a, d, n);
      ull q = d;
      while(q != n - 1 && now != T(1) && now != T(n - 1)){
        q <<= 1;
        now = now * now % n;
      }
      if(!(q&1) && now != T(n-1))return false;
    }
    return true;
  }
  bool isPrime(ull n){
    if(n == 2)return true;
    else if(n == 1 || n % 2 == 0)return false;
    else if(n < 1UL << 31)return isPrime32(n);
    else return isPrime64(n);
  }
};
int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  struct FastPrime<bigint> fp;
  ll n;cin>>n;
  rep(i,0,n){
    ll x;cin>>x;
    cout<<x spa fp.isPrime(x)<<endl;
  }
  return 0;
}
0