結果

問題 No.8030 ミラー・ラビン素数判定法のテスト
ユーザー 👑 tute7627tute7627
提出日時 2020-02-07 17:19:54
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 246 ms / 9,973 ms
コード長 4,097 bytes
コンパイル時間 2,172 ms
コンパイル使用メモリ 174,252 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 23:21:30
合計ジャッジ時間 2,829 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 135 ms
5,248 KB
testcase_05 AC 134 ms
5,248 KB
testcase_06 AC 63 ms
5,248 KB
testcase_07 AC 61 ms
5,248 KB
testcase_08 AC 66 ms
5,248 KB
testcase_09 AC 246 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;

//#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD = 1e9+7;
//const ll MOD = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T>
void chmin(T &a,T b){if(a>b)a=b;}
template<typename T>
void chmax(T &a,T b){if(a<b)a=b;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>
void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T>
void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};
void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++)
{for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};
template<typename T>
void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];
for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};
template<typename T>
vector<vector<T>>vec(ll x, ll y, T w){
  vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,0,-1,0,1,1,-1,-1};
vector<ll>dy={0,1,0,-1,1,-1,1,-1};
template<typename T>
vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>
auto make_v(size_t a,Ts... ts){
  return vector<decltype(make_v(ts...))>(a,make_v(ts...));
}
ostream &operator<<(ostream &os, pair<ll, ll>&p){
  return os << p.first << " " << p.second;
}  

using ull = unsigned long long;
template<typename T>
struct FastPrime{
  mt19937_64 RNG;
  FastPrime():RNG(chrono::steady_clock::now().time_since_epoch().count()){};
  ull modmul(ull x, ull y, ull mod){
    return ull(T(x) * T(y) % T(mod));
  }
  ull modpow(ull p, ull q, ull mod){
    ull tmp = p % mod, ret = 1;
    while(q){
      if(q&1)ret = modmul(ret,tmp,mod);
      q >>= 1;
      tmp = modmul(tmp,tmp,mod);
    }
    return ret;
  }
  vector<ull>v32={2,7,61};
  bool isPrime32(ull n){
    ull d = n - 1;
    while(!(d&1))d >>= 1;
    for(auto a:v32){
      if(n <= a)break;
      ull now = modpow(a, d, n);
      ull q = d;
      while(q != n - 1 && now != 1 && now != n - 1){
        q <<= 1;
        now = modmul(now,now,n);
      }
      if(!(q&1) && now != n-1)return false;
    }
    return true;
  }
  vector<ull>v64={2,325,9375,28178,450775,9780504,1795265022};
  bool isPrime64(ull n){
    ull d = n - 1;
    while(!(d&1))d >>= 1;
    for(auto a:v64){
      if(n <= a)break;
      ull now = modpow(a, d, n);
      ull q = d;
      while(q != n - 1 && now != 1 && now != n - 1){
        q <<= 1;
        now = modmul(now,now,n);
      }
      if(!(q&1) && now != n-1)return false;
    }
    return true;
  }
  bool isPrime(ull n){
    if(n == 2)return true;
    else if(n == 1 || n % 2 == 0)return false;
    else if(n < 1UL << 31)return isPrime32(n);
    else return isPrime64(n);
  }
  /*ull random_generate(ull n){
    uniform_int_distribution<ull>dist(1, n);
    return dist(RNG);
  }
  map<ull,ull>factorize(ull n){
    map<ull,ull>ret;
    while(n != 1){  
      ll cnt = 0;
      vector<T>val(1, random_generate(n));
      val.push_back((val.back() * val.back() + 1) % n);
      while(1){
        T diff = 
        val.push_back((val.back() * val.back() + 1) % n);
        val.push_back((val.back() * val.back() + 1) % n);
      }
    }
  }*/
};
int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  struct FastPrime<__uint128_t> fp;
  ll n;cin>>n;
  rep(i,0,n){
    ll x;cin>>x;
    cout<<x spa fp.isPrime(x)<<endl;
  }
  return 0;
}
0