結果
問題 | No.125 悪の花弁 |
ユーザー | NyaanNyaan |
提出日時 | 2020-02-07 23:07:16 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 245 ms / 5,000 ms |
コード長 | 23,392 bytes |
コンパイル時間 | 2,646 ms |
コンパイル使用メモリ | 207,124 KB |
実行使用メモリ | 27,136 KB |
最終ジャッジ日時 | 2024-09-25 07:32:36 |
合計ジャッジ時間 | 4,629 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 173 ms
26,752 KB |
testcase_01 | AC | 182 ms
27,136 KB |
testcase_02 | AC | 243 ms
27,092 KB |
testcase_03 | AC | 245 ms
27,112 KB |
testcase_04 | AC | 230 ms
26,752 KB |
testcase_05 | AC | 231 ms
26,652 KB |
ソースコード
#include <bits/stdc++.h> #define pb push_back #define eb emplace_back #define fi first #define se second #define rep(i,N) for(long long i = 0; i < (long long)(N); i++) #define repr(i,N) for(long long i = (long long)(N) - 1; i >= 0; i--) #define rep1(i,N) for(long long i = 1; i <= (long long)(N) ; i++) #define repr1(i,N) for(long long i = (N) ; (long long)(i) > 0 ; i--) #define each(x,v) for(auto& x : v) #define all(v) (v).begin(),(v).end() #define sz(v) ((int)(v).size()) #define ini(...) int __VA_ARGS__; in(__VA_ARGS__) #define inl(...) long long __VA_ARGS__; in(__VA_ARGS__) #define ins(...) string __VA_ARGS__; in(__VA_ARGS__) using namespace std; void solve(); using ll = long long; template<class T = ll> using V = vector<T>; using vi = V<int>; using vl = V<>; using vvi = V< V<int> >; constexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1; struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya; template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; } template<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; } void in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);} void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);} template<typename T>void die(T x){out(x); exit(0);} #ifdef NyaanDebug #include "NyaanDebug.h" #define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0) #define trca(v,N) do { cerr << #v << " = "; array_out(v , N);cout << endl;} while(0) #else #define trc(...) #define trca(...) int main(){solve();} #endif #define in2(N,s,t) rep(i,N){in(s[i] , t[i]);} #define in3(N,s,t,u) rep(i,N){in(s[i] , t[i] , u[i]);} using vd = V<double>; using vs = V<string>; using vvl = V< V<> >; template<typename T>using heap = priority_queue< T , V<T> , greater<T> >; using P = pair<int,int>; using vp = V<P>; constexpr int MOD = /**/ 1000000007; //*/ 998244353; ////////////////// template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< MOD >; namespace FastFourierTransform { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < (int)a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < (int)b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; template< int mod > struct NumberTheoreticTransform { int base, max_base, root; vector< int > rev, rts; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(mod_pow(root, (mod - 1) >> 1) == 1) ++root; assert(mod_pow(root, mod - 1) == 1); root = mod_pow(root, (mod - 1) >> max_base); } inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return mod_pow(x, mod - 2); } inline unsigned add(unsigned x, unsigned y) { x += y; if(x >= mod) x -= mod; return x; } inline unsigned mul(unsigned a, unsigned b) { return 1ull * a * b % (unsigned long long) mod; } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { int z = mod_pow(root, 1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector< int > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { int z = mul(a[i + j + k], rts[j + k]); a[i + j + k] = add(a[i + j], mod - z); a[i + j] = add(a[i + j], z); } } } } vector< int > multiply(vector< int > a, vector< int > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); int inv_sz = inverse(sz); for(int i = 0; i < sz; i++) { a[i] = mul(a[i], mul(b[i], inv_sz)); } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } vector<modint> multiply_for_fps(const vector<modint> &a,const vector<modint> &b){ vector<int> A(a.size()) , B(b.size()); for(int i = 0;i < (int)a.size(); i++) A[i] = a[i].x; for(int i = 0;i < (int)b.size(); i++) B[i] = b[i].x; auto C = multiply( A , B ); vector<modint> ret(C.size()); for(int i = 0; i < (int)C.size() ;i++) ret[i].x = C[i]; return ret; } }; template< typename T > struct FormalPowerSeries : vector< T > { using vector< T >::vector; using P = FormalPowerSeries; using MULT = function< P(P, P) >; static MULT &get_mult() { static MULT mult = nullptr; return mult; } static void set_fft(MULT f) { get_mult() = f; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; shrink(); return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; shrink(); return *this; } P &operator*=(const T &v) { const int n = (int) this->size(); for(int k = 0; k < n; k++) (*this)[k] *= v; return *this; } P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } assert(get_mult() != nullptr); return *this = get_mult()(*this, r); } P &operator%=(const P &r) { return *this -= *this / r * r; } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P pre(int sz) const { return P(begin(*this), begin(*this) + min((int) this->size(), sz)); } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1) / (*this)[0]}); for(int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } return ret.pre(deg); } // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == 1); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } P sqrt(int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } P ret({T(1)}); T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } // F(0) must be 0 P exp(int deg = -1) const { assert((*this)[0] == T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1)}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P C(*this * rev); P D(n - i); for(int j = i; j < n; j++) D[j - i] = C[j]; D = (D.log() * k).exp() * (*this)[i].pow(k); P E(deg); if(i * k > deg) return E; auto S = i * k; for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j]; return E; } } return *this; } T eval(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } }; using FPS = FormalPowerSeries< modint >; // fにa * x^n + bを掛ける void mul_simple(FPS &f,modint a ,int n, modint b){ for(int i = (int)f.size() - 1 ; i >= 0 ; i--){ f[i] *= b; if(i >= n) f[i] += f[i - n] * a; } } // fからa * x^n + bを割る void div_simple(FPS &f,modint a,int n,modint b){ for(int i = 0 ; i < (int)f.size() ; i++){ f[i] /= b; if(i + n < (int)f.size() ) f[n + i] -= f[i] * a; } } // f / gをdeg(f)次まで求める FPS div_(FPS &f , FPS g){ int n = f.size(); return (f * g.inv(n)).pre(n); } // solve関数内で // // FPS::set_fft(mul); // // とすること。 // 下記のリンクを実装(kitamasa法のモンゴメリ乗算を使わない版) // http://q.c.titech.ac.jp/docs/progs/polynomial_division.html // k項間漸化式のa_Nを求める O(k log k log N) // N ... 求めたい項 (0-indexed) // Q ... 漸化式 (1 - \sum_i c_i x^i)の形 // a ... 初期解 (a_0 , a_1 , ... , a_k-1) // x^N を fでわった剰余を求め、aと内積を取る modint kitamasa(ll N, FPS &Q, FPS &a){ int k = Q.size() - 1; assert( (int)a.size() == k ); FPS P = a * Q; P.resize(k); while(N){ auto Q2 = Q; for(int i = 1; i < (int)Q2.size(); i += 2) Q2[i].x = MOD - Q2[i].x; auto S = P * Q2; auto T = Q * Q2; if(N & 1){ for(int i = 1 ; i < (int)S.size() ; i += 2) P[i>>1].x = S[i].x; for(int i = 0 ; i < (int)T.size() ; i += 2) Q[i>>1].x = T[i].x; } else{ for(int i = 0 ; i < (int)S.size() ; i += 2) P[i>>1].x = S[i].x; for(int i = 0 ; i < (int)T.size() ; i += 2) Q[i>>1].x = T[i].x; } N >>= 1; } return P[0]; } // 素数判定 O( sqrt(N) log log N ) // 0からNに対して素数->1、それ以外->0の配列を返す関数 vector<int> Primes(int N){ vector<int> A(N + 1 , 1); A[0] = A[1] = 0; for(int i = 2; i * i <= N ; i++) if(A[i]==1) for(int j = i << 1 ; j <= N; j += i) A[j] = 0; return A; } // 因数 O( sqrt(N) log log N ) // 0からNに対して素数->1、それ以外->最小の素数である因数、の配列を返す vector<int> Factors(int N){ vector<int> A(N + 1 , 1); A[0] = A[1] = 0; for(int i = 2; i * i <= N ; i++) if(A[i]==1) for(int j = i << 1 ; j <= N; j += i) A[j] = i; return A; } // オイラーのトーシェント関数 φ(N)=(Nと互いに素なN以下の自然数の個数) vector<int> EulersTotientFunction(int N){ vector<int> ret(N + 1 , 0); for(int i = 0; i <= N ; i++) ret[i] = i; for(int i = 2 ; i <= N ; i++){ if(ret[i] == i) for(int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1); } return ret; } // 約数列挙 O(sqrt(N)) // Nの約数を列挙した配列を返す vector<long long> Divisor(long long N){ vector<long long> v; for(long long i = 1; i * i <= N ; i++){ if(N % i == 0){ v.push_back(i); if(i * i != N) v.push_back(N / i); } } return v; } // 素因数分解 // 因数をkey、そのべきをvalueとするmapを返す // ex) N=12 -> m={ (2,2) , (3,1) } map<long long,int> PrimeFactors(long long N){ map<long long,int> m; for(long long i=2; i * i <= N; i++) while(N % i == 0) m[i]++ , N /= i; if(N != 1) m[N]++; return m; } // 原始根 modでrが原始根かどうかを調べる bool PrimitiveRoot(long long r , long long mod){ r %= mod; if(r == 0) return false; auto modpow = [](long long a,long long b,long long m)->long long{ a %= m; long long ret = 1; while(b){ if(b & 1) ret = a * ret % m; a = a * a % m; b >>= 1; } return ret; }; map<long long,int> m = PrimeFactors(mod - 1); each(x , m){ if(modpow(r , (mod - 1) / x.fi , mod ) == 1) return false; } return true; } // 拡張ユークリッド ax+by=gcd(a,b)の解 // 返り値 最大公約数 long long extgcd(long long a,long long b, long long &x, long long &y){ if(b == 0){ x = 1; y = 0; return a; } long long d = extgcd(b , a%b , y , x); y -= a / b * x; return d; } // ブール代数ライブラリ // Point. 乗法の単位元は-1 (UNIT & a = aを満たすUNITであるため) struct BA{ unsigned long long x; BA(): x(0){} BA(unsigned long long y):x(y){} BA operator += (const BA &p){ x = x ^ p.x; return (*this); } BA operator *= (const BA &p){ x = x & p.x; return (*this); } BA operator+(const BA &p)const {return BA(*this) += p;} BA operator*(const BA &p)const {return BA(*this) *= p;} bool operator==(const BA &p) const { return x == p.x; } bool operator!=(const BA &p) const { return x != p.x; } friend ostream &operator<<(ostream &os,const BA &p){ return os << p.x; } friend istream &operator>>(istream &is, BA &a){ unsigned int t; is >> t; a = BA(t); return (is); } }; // c++17での名前衝突を避けるためdefine #define gcd nyagcd #define lcm nyalcm ll nyagcd(ll x, ll y){ ll z; if(x > y) swap(x,y); while(x){ x = y % (z = x); y = z; } return y; } ll nyalcm(ll x,ll y){ return 1LL * x / gcd(x,y) * y; } vector<ll> fac,finv,inv; void cominit(int MAX) { MAX++; fac.resize(MAX , 0); finv.resize(MAX , 0); inv.resize(MAX , 0); fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // nCk combination inline long long COM(int n,int k){ if(n < k || k < 0 || n < 0) return 0; else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } // nPk permutation inline long long PER(int n,int k){ if (n < k || k < 0 || n < 0) return 0; else return (fac[n] * finv[n - k]) % MOD; } // nHk homogeneous polynomial inline long long HGP(int n,int k){ if(n == 0 && k == 0) return 1; //問題依存? else if(n < 1 || k < 0) return 0; else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD; } void solve(){ cominit(1001001); ini(N); vi a(N); in(a); int s = accumulate(all(a) , 0LL); int g = 0; each(x , a) g = gcd(x , g); auto D = Divisor(g); map<ll , modint> m; each(d , D){ //trc(d); modint ret = fac[s / d]; each(x , a){ //trc(x / d); ret *= finv[x / d]; } m.emplace(s / d , ret); } //each(x , m) trc(x); modint ans = 0; rep(i , s){ ans += m[gcd(i , s)]; //trc(ans); } out(ans / s); }