結果
| 問題 |
No.510 二次漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-02-09 20:24:06 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 484 ms / 3,000 ms |
| コード長 | 9,173 bytes |
| コンパイル時間 | 2,268 ms |
| コンパイル使用メモリ | 207,360 KB |
| 最終ジャッジ日時 | 2025-01-08 23:22:11 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 34 |
ソースコード
#include <bits/stdc++.h>
#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...) ((void)0)
#endif
template <std::uint32_t M> class ModInt{
public:
std::uint64_t val;
ModInt(): val(0){}
ModInt(std::int64_t n){
if(n >= M) val = n % M;
else if(n < 0) val = n % M + M;
else val = n;
}
inline constexpr auto operator+(const ModInt &a) const {return ModInt(val + a.val);}
inline constexpr auto operator-(const ModInt &a) const {return ModInt(val - a.val);}
inline constexpr auto operator*(const ModInt &a) const {return ModInt(val * a.val);}
inline constexpr auto operator/(const ModInt &a) const {return ModInt(val * a.inv().val);}
inline constexpr auto& operator=(const ModInt &a){val = a.val; return *this;}
inline constexpr auto& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;}
inline constexpr auto& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;}
inline constexpr auto& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;}
inline constexpr auto& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;}
inline constexpr bool operator==(const ModInt &a) const {return val == a.val;}
inline constexpr bool operator!=(const ModInt &a) const {return val != a.val;}
inline constexpr auto& operator++(){*this += 1; return *this;}
inline constexpr auto& operator--(){*this -= 1; return *this;}
inline constexpr auto operator++(int){auto t = *this; *this += 1; return t;}
inline constexpr auto operator--(int){auto t = *this; *this -= 1; return t;}
inline constexpr static auto frac(std::int64_t a, std::int64_t b){
return ModInt(a) / ModInt(b);
}
inline constexpr static ModInt power(std::int64_t n, std::int64_t p){
if(p < 0) return power(n, -p).inv();
ModInt ret = 1, e = n;
for(; p; e *= e, p >>= 1) if(p & 1) ret *= e;
return ret;
}
inline constexpr auto power(std::int64_t p) const {return power(val, p);}
inline constexpr ModInt inv() const {
std::int64_t a = val, b = M, u = 1, v = 0;
while(b){
std::int64_t t = a/b;
a -= t*b; std::swap(a,b);
u -= t*v; std::swap(u,v);
}
u %= M;
if(u < 0) u += M;
return u;
}
};
template <std::uint32_t M> auto operator-(const ModInt<M> &a){return ModInt<M>(-a.val);}
template <std::uint32_t M> auto operator+(std::int64_t a, const ModInt<M> &b){return ModInt<M>(a) + b;}
template <std::uint32_t M> auto operator-(std::int64_t a, const ModInt<M> &b){return ModInt<M>(a) - b;}
template <std::uint32_t M> auto operator*(std::int64_t a, const ModInt<M> &b){return ModInt<M>(a) * b;}
template <std::uint32_t M> auto operator/(std::int64_t a, const ModInt<M> &b){return ModInt<M>(a) / b;}
template <std::uint32_t M> std::istream& operator>>(std::istream &is, ModInt<M> &a){is >> a.val; return is;}
template <std::uint32_t M> std::ostream& operator<<(std::ostream &os, const ModInt<M> &a){os << a.val; return os;}
template <typename Semiring, int N> struct SquareMatrix{
using value_type = typename Semiring::value_type;
std::array<std::array<value_type, N>, N> matrix;
SquareMatrix(){}
SquareMatrix(std::initializer_list<std::initializer_list<value_type>> list){
int i = 0;
for(auto it1 = list.begin(); it1 != list.end(); ++it1, ++i){
int j = 0;
for(auto it2 = it1->begin(); it2 != it1->end(); ++it2, ++j){
matrix[i][j] = *it2;
}
}
}
bool operator==(const SquareMatrix &val) const {return matrix == val.matrix;}
bool operator!=(const SquareMatrix &val) const {return !(*this == val);}
auto& operator=(const SquareMatrix &val){
matrix = val.matrix;
return *this;
}
auto& operator+=(const SquareMatrix &val){
for(size_t i = 0; i < N; ++i){
for(size_t j = 0; j < N; ++j){
matrix[i][j] = Semiring::add(matrix[i][j], val[i][j]);
}
}
return *this;
}
auto& operator*=(const SquareMatrix &val){
std::array<std::array<value_type, N>, N> temp;
for(size_t i = 0; i < N; ++i){
for(size_t j = 0; j < N; ++j){
for(size_t k = 0; k < N; ++k){
temp[i][j] = Semiring::add(temp[i][j], Semiring::mul(matrix[i][k], val[k][j]));
}
}
}
std::swap(matrix, temp);
return *this;
}
inline const auto& operator[](size_t i) const {return matrix[i];}
inline auto& operator[](size_t i){return matrix[i];}
inline int size() const {return N;}
static auto make_unit(){
SquareMatrix<Semiring, N> ret;
for(size_t i = 0; i < N; ++i) ret[i][i] = Semiring::id_mul();
return ret;
}
friend auto operator+(const SquareMatrix &a, const SquareMatrix &b){auto ret = a; ret += b; return ret;}
friend auto operator*(const SquareMatrix &a, const SquareMatrix &b){auto ret = a; ret *= b; return ret;}
friend auto power(SquareMatrix a, uint64_t p){
if(p == 0) return make_unit();
if(p == 1) return a;
auto temp = power(a, p/2);
auto ret = temp * temp;
if(p & 1) ret *= a;
return ret;
}
};
template <typename Monoid>
class SegmentTree{
using value_type = typename Monoid::value_type;
protected:
const int depth, size, hsize;
std::vector<value_type> data;
public:
SegmentTree(int n):
depth(n > 1 ? 32-__builtin_clz(n-1) + 1 : 1),
size((1 << depth) - 1),
hsize(size / 2 + 1),
data(size + 1, Monoid::id())
{}
inline auto operator[](int i) const {return at(i);}
inline auto at(int i) const {return data[hsize + i];}
inline auto get(int x, int y) const { // [x,y)
value_type ret_left = Monoid::id();
value_type ret_right = Monoid::id();
int l = x + hsize, r = y + hsize;
while(l < r){
if(r & 1) ret_right = Monoid::op(data[--r], ret_right);
if(l & 1) ret_left = Monoid::op(ret_left, data[l++]);
l >>= 1, r >>= 1;
}
return Monoid::op(ret_left, ret_right);
}
inline void update(int i, const value_type &x){
i += hsize;
data[i] = x;
while(i > 1) i >>= 1, data[i] = Monoid::op(data[i << 1 | 0], data[i << 1 | 1]);
}
template <typename T>
inline void init_with_vector(const std::vector<T> &val){
data.assign(size + 1, Monoid::id());
for(int i = 0; i < (int)val.size(); ++i) data[hsize + i] = val[i];
for(int i = hsize-1; i >= 1; --i) data[i] = Monoid::op(data[i << 1 | 0], data[i << 1 | 1]);
}
template <typename T>
inline void init(const T &val){
init_with_vector(std::vector<value_type>(hsize, val));
}
const auto& debug() const {
return data;
}
};
template <typename T>
struct AddMulSemiring{
using value_type = T;
constexpr inline static value_type id_add(){return 0;}
constexpr inline static value_type id_mul(){return 1;}
constexpr inline static value_type add(const value_type &a, const value_type &b){return a + b;}
constexpr inline static value_type mul(const value_type &a, const value_type &b){return a * b;}
};
template <typename T, typename = void>
struct ProductMonoid{
using value_type = T;
static value_type ONE;
constexpr inline static value_type id(){return ONE;}
constexpr inline static value_type op(const value_type &a, const value_type &b){return a * b;}
};
template <typename T>
struct ProductMonoid<T, typename std::enable_if<std::is_arithmetic<T>::value>::type>{
using value_type = T;
constexpr inline static value_type id(){return 1;}
constexpr inline static value_type op(const value_type &a, const value_type &b){return a * b;}
};
template <typename Monoid>
struct DualMonoid{
using value_type = typename Monoid::value_type;
constexpr inline static value_type id(){return Monoid::id();}
constexpr inline static value_type op(const value_type &a, const value_type &b){return Monoid::op(b, a);}
};
using mint = ModInt<1000000007>;
using Mat = SquareMatrix<AddMulSemiring<mint>, 4>;
using Mon = DualMonoid<ProductMonoid<Mat>>;
template <> Mat ProductMonoid<Mat>::ONE = Mat::make_unit();
int main(){
int n, q;
while(std::cin >> n >> q){
SegmentTree<Mon> seg(n);
std::vector<mint> x(n), y(n);
for(int i = 0; i < n; ++i){
Mat t = {
{1, 0, x[i], 0},
{0, y[i], 0, 1},
{0, 2*y[i], y[i]*y[i], 1},
{0, 0, 0, 1}
};
seg.update(i, t);
}
while(q--){
char c; std::cin >> c;
if(c == 'x'){
int i, v; std::cin >> i >> v;
x[i] = v;
Mat t = {
{1, 0, x[i], 0},
{0, y[i], 0, 1},
{0, 2*y[i], y[i]*y[i], 1},
{0, 0, 0, 1}
};
seg.update(i, t);
}else if(c == 'y'){
int i, v; std::cin >> i >> v;
y[i] = v;
Mat t = {
{1, 0, x[i], 0},
{0, y[i], 0, 1},
{0, 2*y[i], y[i]*y[i], 1},
{0, 0, 0, 1}
};
seg.update(i, t);
}else{
int i; std::cin >> i;
auto m = seg.get(0, i);
mint ans = m[0][0] + m[0][1] + m[0][2] + m[0][3];
std::cout << ans << std::endl;
}
}
std::cerr << std::endl;
}
return 0;
}