結果
| 問題 |
No.995 タピオカオイシクナーレ
|
| コンテスト | |
| ユーザー |
monkukui2
|
| 提出日時 | 2020-02-11 21:03:31 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 42 ms / 2,000 ms |
| コード長 | 4,734 bytes |
| コンパイル時間 | 1,273 ms |
| コンパイル使用メモリ | 106,948 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-08 22:36:28 |
| 合計ジャッジ時間 | 2,914 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 |
ソースコード
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <utility>
#include <algorithm>
#include <map>
#include <set>
#include <complex>
#include <cmath>
#include <limits>
#include <climits>
#include <ctime>
#include <cassert>
#include <numeric>
#include <functional>
#include <bitset>
using namespace std;
using lint = long long int;
long long int INF = 1001001001001001LL;
int inf = 1000000007;
long long int MOD = 1000000007LL;
double PI = 3.1415926535897932;
template<typename T1,typename T2>inline void chmin(T1 &a,const T2 &b){if(a>b) a=b;}
template<typename T1,typename T2>inline void chmax(T1 &a,const T2 &b){if(a<b) a=b;}
#define ALL(a) a.begin(),a.end()
#define RALL(a) a.rbegin(),a.rend()
/* do your best */
// 状態遷移図(確率)を書いて,連立漸化式立てて,行列式に変形して,行列累乗(僕これ苦手)
template<typename T,T MOD = 1000000007>
struct Mint{
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;};
Mint operator-(Mint a) const{return Mint(v)-=a;};
Mint operator*(Mint a) const{return Mint(v)*=a;};
Mint operator/(Mint a) const{return Mint(v)/=a;};
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint res(1);
for(int i=0;i<k;i++){
res*=Mint(n-i);
res/=Mint(i+1);
}
return res;
}
};
// 逆元を求める. a と m は互いに素であることが要請される.
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while(b){
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
// before your coding, you have to write a line "math_init()"
template<typename T>
struct SquareMatrix{
vector<vector<T>> dat;
size_t N;
SquareMatrix() = default;
SquareMatrix(size_t N, T val = T()):N(N){
dat = vector<vector<T>> (N, vector<T> (N));
for(size_t i=0;i<N;i++)
for(size_t j=0;j<N;j++)
dat[i][j]=val;
}
SquareMatrix& operator=(const SquareMatrix& a){
dat=a.dat;
return (*this);
}
bool operator==(const SquareMatrix& a) const{
return dat==a.dat;
}
size_t size() const{return N;};
vector<T>& operator[](size_t k){return dat[k];};
const vector<T>& operator[](size_t k) const {return dat[k];};
SquareMatrix operator*(const SquareMatrix &B) const{
SquareMatrix res(N, 0);
for(size_t i=0;i<N;i++)
for(size_t j=0;j<N;j++)
for(size_t k=0;k<N;k++)
res[i][j]=res[i][j]+(dat[i][k]*B[k][j]);
return res;
}
SquareMatrix operator+(const SquareMatrix &B) const{
SquareMatrix res(N, 0);
for(size_t i=0;i<N;i++)
for(size_t j=0;j<N;j++)
res[i][j]=dat[i][j]+B[i][j];
return res;
}
SquareMatrix pow(long long n) const{
SquareMatrix a=*this;
SquareMatrix res(N, 0);
for(size_t i = 0; i < N; i++) res[i][i] = 1;
while(n){
if(n&1) res=res*a;
a=a*a;
n>>=1;
}
return res;
}
};
int main() {
using modint = Mint<lint>;
lint n, m, k; cin >> n >> m >> k;
lint p; // 状態が変化する確率
lint pp, qq; cin >> pp >> qq;
p = pp * modinv(qq, MOD) % MOD;
SquareMatrix<modint> mat(2);
mat[0][0] = mat[1][1] = modint(1 - p);
mat[1][0] = mat[0][1] = modint(p);
mat = mat.pow(k);
modint tapi = 0;
modint oka = 0;
for(int i = 1; i <= n; i++) {
lint b; cin >> b;
if(i <= m) tapi += b;
else oka += b;
}
modint ak = mat[0][0];
modint bk = mat[1][0];
cout << (tapi * ak + oka * bk).v << endl;
return 0;
}
monkukui2