結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | haruki_K |
提出日時 | 2020-02-12 02:01:20 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 10 ms / 5,000 ms |
コード長 | 9,909 bytes |
コンパイル時間 | 1,993 ms |
コンパイル使用メモリ | 179,832 KB |
実行使用メモリ | 7,168 KB |
最終ジャッジ日時 | 2024-10-01 15:20:42 |
合計ジャッジ時間 | 3,030 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 7 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 4 ms
5,248 KB |
testcase_07 | AC | 5 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 4 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 3 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 1 ms
5,248 KB |
testcase_15 | AC | 6 ms
5,248 KB |
testcase_16 | AC | 5 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 5 ms
5,248 KB |
testcase_19 | AC | 7 ms
5,248 KB |
testcase_20 | AC | 10 ms
7,136 KB |
testcase_21 | AC | 10 ms
7,168 KB |
testcase_22 | AC | 10 ms
6,948 KB |
testcase_23 | AC | 3 ms
5,248 KB |
testcase_24 | AC | 6 ms
5,248 KB |
testcase_25 | AC | 5 ms
5,248 KB |
testcase_26 | AC | 6 ms
5,248 KB |
testcase_27 | AC | 6 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 10 ms
6,784 KB |
testcase_30 | AC | 7 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 3 ms
5,248 KB |
testcase_33 | AC | 4 ms
5,248 KB |
testcase_34 | AC | 3 ms
5,248 KB |
testcase_35 | AC | 3 ms
5,248 KB |
testcase_36 | AC | 5 ms
5,248 KB |
testcase_37 | AC | 1 ms
5,248 KB |
testcase_38 | AC | 6 ms
5,248 KB |
testcase_39 | AC | 4 ms
5,248 KB |
ソースコード
// >>> TEMPLATES #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; #define int ll #define double ld #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define rep1(i,n) for (int i = 1; i <= (int)(n); i++) #define repR(i,n) for (int i = (int)(n)-1; i >= 0; i--) #define rep1R(i,n) for (int i = (int)(n); i >= 1; i--) #define loop(i,a,B) for (int i = a; i B; i++) #define loopR(i,a,B) for (int i = a; i B; i--) #define all(x) (x).begin(), (x).end() #define allR(x) (x).rbegin(), (x).rend() #define pb push_back #define eb emplace_back #define mp make_pair #define fst first #define snd second #define INF (numeric_limits<int>::max()/2-1) #ifdef LOCAL #include "debug.hpp" #define dump(...) cerr << "[" << __LINE__ << ":" << __FUNCTION__ << "] ", dump_impl(#__VA_ARGS__, __VA_ARGS__) #define say(x) cerr << "[" << __LINE__ << ":" << __FUNCTION__ << "] " << x << endl #define debug if (1) #else #define dump(...) (void)(0) #define say(x) (void)(0) #define debug if (0) #endif template <class T> using pque_max = priority_queue<T>; template <class T> using pque_min = priority_queue<T, vector<T>, greater<T> >; template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type> ostream& operator<<(ostream& os, T const& v) { bool f = true; for (auto const& x : v) os << (f ? "" : " ") << x, f = false; return os; } template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type> istream& operator>>(istream& is, T &v) { for (auto& x : v) is >> x; return is; } template <class T, class S> istream& operator>>(istream& is, pair<T,S>& p) { return is >> p.first >> p.second; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template <class F> struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward<F>(f)) {} template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); } }; struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } }; #define MFP MakeFixPoint()| #define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__) template <class T, size_t d> struct vec_impl { using type = vector<typename vec_impl<T,d-1>::type>; template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T,d-1>::make_v(forward<U>(x)...)); } }; template <class T> struct vec_impl<T,0> { using type = T; static type make_v(T const& x = {}) { return x; } }; template <class T, size_t d = 1> using vec = typename vec_impl<T,d>::type; template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T,d>::make_v(forward<Args>(args)...); } template <class T> void quit(T const& x) { cout << x << endl; exit(0); } template <class T> constexpr bool chmin(T& x, T const& y) { if (x > y) { x = y; return true; } return false; } template <class T> constexpr bool chmax(T& x, T const& y) { if (x < y) { x = y; return true; } return false; } template <class It> constexpr auto sumof(It b, It e) { return accumulate(b,e,typename iterator_traits<It>::value_type{}); } template <class T> int sz(T const& x) { return x.size(); } template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(v.begin(), v.end(), x)-v.begin(); } template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(v.begin(), v.end(), x)-v.begin(); } // <<< // >>> modint template <uint32_t MOD> struct ModInt { using u32 = uint32_t; using u64 = uint64_t; using i64 = int64_t; using M = ModInt; static constexpr u32 mul_inv(u32 n, int e = 5, u32 x = 1) { return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n)); } static constexpr u32 mod = MOD; static constexpr u32 nn = mul_inv(MOD); static constexpr u32 r2 = -u64(MOD) % MOD; u32 x; constexpr ModInt(i64 x = 0) : x(reduce(((x%=MOD)<0 ? x+MOD : x)*r2)) {} static constexpr u32 reduce(u64 w) { return u32(w >> 32) + MOD - i64((u64(u32(w) * nn) * MOD) >> 32); } constexpr i64 val() const { i64 r = reduce(x); if (r >= MOD) r -= MOD; return r; } constexpr explicit operator i64() const { return val(); } constexpr bool operator==(M p) const { return val() == p.val(); } constexpr bool operator!=(M p) const { return val() != p.val(); } constexpr M operator+() const { return *this; } constexpr M operator-() const { M r; r.x = x ? i64(2*MOD)-x : 0; return r; } constexpr M &operator+=(M p) { i64 t = x; if (((t += p.x) -= 2*MOD) < 0) t += 2*MOD; x = t; return *this; } constexpr M &operator-=(M p) { return *this += -p; } constexpr M &operator*=(M p) { x = reduce(u64(x)*p.x); return *this; } constexpr M &operator/=(M p) { *this *= p.inv(); return *this; } constexpr M operator+(M p) const { return M(*this) += p; } constexpr M operator-(M p) const { return M(*this) -= p; } constexpr M operator*(M p) const { return M(*this) *= p; } constexpr M operator/(M p) const { return M(*this) /= p; } friend constexpr M operator+(i64 x, M y) { return M(x)+y; } friend constexpr M operator-(i64 x, M y) { return M(x)-y; } friend constexpr M operator*(i64 x, M y) { return M(x)*y; } friend constexpr M operator/(i64 x, M y) { return M(x)/y; } constexpr M inv() const { return pow(MOD - 2); } constexpr M pow(i64 n) const { if (n < 0) return inv().pow(-n); M v = *this, r = 1; for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v; return r; } friend ostream &operator<<(ostream &os, M p) { return os << p.val(); } friend istream &operator>>(istream &is, M &a) { u32 t; is >> t; a = t; return is; } #ifdef LOCAL friend string to_s(M const& p) { return to_s(p.val(), MOD); } #endif }; // <<< //constexpr int64_t MOD = 998244353; constexpr int64_t MOD = 1e9+7; using mint = ModInt<MOD>; // >>> matrix template <class T> struct Matrix { int n,m; vector<vector<T> > a; Matrix() {} Matrix(int n, int m) : n(n), m(m), a(n) { assert(n > 0 && m > 0); rep (i,n) a[i].resize(m); } Matrix(initializer_list<initializer_list<T> > init) { for (auto ls : init) { a.emplace_back(); for (auto x : ls) a.back().emplace_back(x); } n = a.size(); assert(n > 0); m = a[0].size(); assert(m > 0); } vector<T> const& operator[](int i) const { assert(0 <= i && i < n); return a[i]; } vector<T> & operator[](int i) { assert(0 <= i && i < n); return a[i]; } bool operator==(Matrix const& x) const { if (n != x.n || m != x.m) return false; rep (i,n) rep (j,m) if (a[i][j] != x[i][j]) return false; return true; } bool operator!=(Matrix const& x) const { return !(*this == x); } Matrix& operator+=(Matrix const& x) { assert(n == x.n && m == x.m); rep (i,n) rep (j,m) a[i][j] += x[i][j]; return *this; } Matrix& operator-=(Matrix const& x) { assert(n == x.n && m == x.m); rep (i,n) rep (j,m) a[i][j] -= x[i][j]; return *this; } Matrix operator+(Matrix const& x) const { return Matrix(*this) += x; } Matrix operator-(Matrix const& x) const { return Matrix(*this) -= x; } Matrix operator*(Matrix const& x) const { assert(m == x.n); Matrix ret(n,x.m); rep (i,n) rep (j,m) rep (k,x.m) ret[i][k] += a[i][j] * x[j][k]; return ret; } Matrix& operator*=(Matrix const& x) { auto res = (*this)*x; swap(a, res.a); return *this; } Matrix operator+() const { return *this; } Matrix operator-() const { Matrix x = *this; rep (i,n) rep (j,m) x[i][j] = -x[i][j]; return x; } Matrix& operator*=(T const& c) { rep (i,n) rep (j,m) a[i][j] *= c; return *this; } Matrix operator*(T const& c) const { return Matrix(*this) *= c; } friend Matrix operator*(T const& c, Matrix const& x) { Matrix ret = x; rep (i,x.n) rep (j,x.m) ret[i][j] = c*x[i][j]; return ret; } Matrix& operator/=(T const& c) { rep (i,n) rep (j,m) a[i][j] /= c; return *this; } Matrix operator/(T const& c) const { return Matrix(*this) /= c; } static Matrix identity(int n) { Matrix ret(n,n); rep (i,n) ret[i][i] = 1; return ret; } Matrix pow(ll k) const { assert(n == m); assert(k >= 0); Matrix v = *this, r = Matrix::identity(n); for (; k > 0; k >>= 1, v *= v) if (k&1) r *= v; return r; } friend istream& operator>>(istream& is, Matrix& x) { rep (i,x.n) rep (j,x.m) is >> x[i][j]; return is; } #ifdef LOCAL friend string to_s(Matrix const& x) { string ret; rep (i,x.n) { ret += "\n("; rep (j,x.m) ret += " " + to_s(x[i][j]); ret += " )"; } return ret += "\n"; } #endif }; // <<< int32_t main() { int n,k; cin >> n >> k; vector<int> a(n); cin >> a; if (k <= int(1e6+10)) { vector<mint> s(k+1); rep (i,n) s[i+1] = s[i] + a[i]; loop (i,n,<k) s[i+1] = 2*s[i] - s[i-n]; cout << s[k]-s[k-1] << " " << s[k] << endl; } else { Matrix<mint> mat(n+1,n+1); mat[0][0] = 2; mat[0][n] = -1; rep (i,n) mat[i+1][i] = 1; dump(mat); auto res = mat.pow(k-n); vector<mint> s(n+1); rep (i,n) s[i+1] = s[i] + a[i]; mint x = 0, y = 0; rep (i,n+1) x += res[0][i] * s[n-i]; rep (i,n+1) y += res[1][i] * s[n-i]; cout << x-y << " " << x << endl; } }