結果
問題 | No.990 N×Mマス計算(Kの倍数) |
ユーザー |
![]() |
提出日時 | 2020-02-14 21:34:39 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 97 ms / 2,000 ms |
コード長 | 6,712 bytes |
コンパイル時間 | 2,383 ms |
コンパイル使用メモリ | 192,892 KB |
実行使用メモリ | 14,692 KB |
最終ジャッジ日時 | 2024-11-16 00:27:38 |
合計ジャッジ時間 | 3,726 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 19 |
ソースコード
#include <bits/stdc++.h>using namespace std;using lint = long long int;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define SZ(x) ((lint)(x).size())#define POW2(n) (1LL << (n))#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }///// This part below is only for debug, not used /////template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; returnos; }template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}";return os; }template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; returnos; }template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;///// END //////*#include <ext/pb_ds/assoc_container.hpp>#include <ext/pb_ds/tree_policy.hpp>#include <ext/pb_ds/tag_and_trait.hpp>using namespace __gnu_pbds; // find_by_order(), order_of_key()template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;*/// Sieve of Eratosthenes// (*this)[i] = (divisor of i, greater than 1)// Example: [0, 1, 2, 3, 2, 5, 3, 7, 2, 3, 2, 11, ...]// Complexity: Space O(MAXN), Time (construction) O(MAXNloglogMAXN)struct SieveOfEratosthenes : std::vector<int>{std::vector<int> primes;SieveOfEratosthenes(int MAXN) : std::vector<int>(MAXN + 1) {std::iota(begin(), end(), 0);for (int i = 2; i <= MAXN; i++) {if ((*this)[i] == i) {primes.push_back(i);for (int j = i; j <= MAXN; j += i) (*this)[j] = i;}}}using T = long long int;// Prime factorization for x <= MAXN^2// Complexity: O(log x) (x <= MAXN)// O(MAXN / logMAXN) (MAXN < x <= MAXN^2)std::map<T, int> Factorize(T x) {assert(x <= 1LL * (int(size()) - 1) * (int(size()) - 1));std::map<T, int> ret;if (x < int(size())) {while (x > 1) {ret[(*this)[x]]++;x /= (*this)[x];}}else {for (auto p : primes) {while (!(x % p)) x /= p, ret[p]++;if (x == 1) break;}if (x > 1) ret[x]++;}return ret;}std::vector<T> Divisors(int x) {std::vector<T> ret{1};for (auto p : Factorize(x)) {int n = ret.size();for (int i = 0; i < n; i++) {for (T a = 1, d = 1; d <= p.second; d++) {a *= p.first;ret.push_back(ret[i] * a);}}}return ret; // Not sorted}// Moebius function Table// return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...]std::vector<int> GenerateMoebiusFunctionTable() {std::vector<int> ret(size());for (int i = 1; i < int(size()); i++) {if (i == 1) ret[i] = 1;else if ((i / (*this)[i]) % (*this)[i] == 0) ret[i] = 0;else ret[i] = -ret[i / (*this)[i]];}return ret;}};SieveOfEratosthenes sieve(100000);int main(){lint N, M, K;cin >> N >> M >> K;char c;cin >> c;vector<lint> B(M), A(N);cin >> B >> A;vector<lint> divs = sieve.Divisors(K);sort(divs.begin(), divs.end());lint ret = 0;if (c == '*'){unordered_map<lint, int> dinv;REP(i, divs.size())dinv[divs[i]] = i;vector<lint> coua(divs.size()), coub(divs.size());for (auto a : A)coua[dinv[__gcd(a, K)]]++;for (auto b : B)coub[dinv[__gcd(b, K)]]++;REP(i, divs.size()){FOR(j, i + 1, divs.size()){if (divs[j] % divs[i] == 0)coua[i] += coua[j];}}REP(i, divs.size()) {ret += coua[i] * coub[divs.size() - 1 - i];}}else {unordered_map<lint, int> coua;for (auto a : A) coua[a % K]++;for (auto b : B) {lint tgt = (K - b % K) % K;ret += coua[tgt];}}cout << ret << endl;}