結果
問題 | No.992 最長増加部分列の数え上げ |
ユーザー | LayCurse |
提出日時 | 2020-02-14 22:04:29 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 40 ms / 2,000 ms |
コード長 | 10,274 bytes |
コンパイル時間 | 2,558 ms |
コンパイル使用メモリ | 217,544 KB |
実行使用メモリ | 13,036 KB |
最終ジャッジ日時 | 2024-10-06 11:53:48 |
合計ジャッジ時間 | 5,340 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
8,064 KB |
testcase_01 | AC | 5 ms
8,192 KB |
testcase_02 | AC | 5 ms
8,192 KB |
testcase_03 | AC | 5 ms
8,192 KB |
testcase_04 | AC | 17 ms
9,472 KB |
testcase_05 | AC | 14 ms
9,088 KB |
testcase_06 | AC | 21 ms
9,728 KB |
testcase_07 | AC | 16 ms
9,216 KB |
testcase_08 | AC | 10 ms
8,704 KB |
testcase_09 | AC | 26 ms
9,344 KB |
testcase_10 | AC | 32 ms
9,856 KB |
testcase_11 | AC | 30 ms
10,112 KB |
testcase_12 | AC | 10 ms
8,576 KB |
testcase_13 | AC | 15 ms
9,216 KB |
testcase_14 | AC | 16 ms
9,472 KB |
testcase_15 | AC | 9 ms
8,704 KB |
testcase_16 | AC | 36 ms
11,136 KB |
testcase_17 | AC | 11 ms
8,960 KB |
testcase_18 | AC | 16 ms
9,344 KB |
testcase_19 | AC | 24 ms
10,112 KB |
testcase_20 | AC | 38 ms
11,392 KB |
testcase_21 | AC | 37 ms
11,392 KB |
testcase_22 | AC | 37 ms
11,520 KB |
testcase_23 | AC | 37 ms
11,392 KB |
testcase_24 | AC | 38 ms
11,264 KB |
testcase_25 | AC | 37 ms
11,392 KB |
testcase_26 | AC | 38 ms
11,520 KB |
testcase_27 | AC | 37 ms
11,392 KB |
testcase_28 | AC | 40 ms
11,264 KB |
testcase_29 | AC | 39 ms
11,392 KB |
testcase_30 | AC | 29 ms
12,776 KB |
testcase_31 | AC | 28 ms
12,776 KB |
testcase_32 | AC | 28 ms
12,732 KB |
testcase_33 | AC | 26 ms
12,656 KB |
testcase_34 | AC | 27 ms
12,776 KB |
testcase_35 | AC | 22 ms
12,780 KB |
testcase_36 | AC | 22 ms
12,648 KB |
testcase_37 | AC | 23 ms
12,780 KB |
testcase_38 | AC | 22 ms
12,656 KB |
testcase_39 | AC | 23 ms
12,912 KB |
testcase_40 | AC | 31 ms
13,036 KB |
testcase_41 | AC | 30 ms
12,788 KB |
testcase_42 | AC | 30 ms
12,780 KB |
testcase_43 | AC | 30 ms
12,788 KB |
testcase_44 | AC | 30 ms
12,912 KB |
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (1000000007U) void *wmem; char memarr[96000000]; template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } inline void wt_L(char a){ putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ putchar_unlocked('-'); } while(s--){ putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class S> inline void arrInsert(const int k, int &sz, S a[], const S aval){ int i; sz++; for(i=sz-1;i>k;i--){ a[i] = a[i-1]; } a[k] = aval; } template<class S, class T> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval){ int i; sz++; for(i=sz-1;i>k;i--){ a[i] = a[i-1]; } for(i=sz-1;i>k;i--){ b[i] = b[i-1]; } a[k] = aval; b[k] = bval; } template<class S, class T, class U> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U cval){ int i; sz++; for(i=sz-1;i>k;i--){ a[i] = a[i-1]; } for(i=sz-1;i>k;i--){ b[i] = b[i-1]; } for(i=sz-1;i>k;i--){ c[i] = c[i-1]; } a[k] = aval; b[k] = bval; c[k] = cval; } template<class S, class T, class U, class V> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U cval, V d[], const V dval){ int i; sz++; for(i=sz-1;i>k;i--){ a[i] = a[i-1]; } for(i=sz-1;i>k;i--){ b[i] = b[i-1]; } for(i=sz-1;i>k;i--){ c[i] = c[i-1]; } for(i=sz-1;i>k;i--){ d[i] = d[i-1]; } a[k] = aval; b[k] = bval; c[k] = cval; d[k] = dval; } template<class T> struct fenwick{ int size; int memory; T *data; void malloc(int mem); void walloc(int mem, void **workMemory = &wmem); void free(void); void init(int N); void add(int k, T val); T get(int k); T range(int a, int b); int kth(T k); } ; int N; int A[200000+2]; int l1[200000+2]; int l2[200000+2]; int arr[200000+2]; int lev[200000+2]; fenwick<Modint> f[200000+2]; vector<int> d[200000+2]; int r[200000+2]; int LIS(int n, int a[]){ int i; int k; int res; arr[0] = a[0]; lev[0] = 1; res = 1; int Lj4PdHRW = n; for(i=(1);i<(Lj4PdHRW);i++){ k = lower_bound(arr, arr+res, a[i]) - arr; arr[k] = a[i]; lev[i] = k + 1; if(res==k){ res++; } } return res; } int main(){ wmem = memarr; int i; int j; int k; int len; Modint tmp; rd(N); { int e98WHCEY; for(e98WHCEY=(0);e98WHCEY<(N);e98WHCEY++){ rd((A+1)[e98WHCEY]); } } N += 2; A[0] = -1073709056; A[N-1] = 1073709056; len = LIS(N, A); for(i=(0);i<(N);i++){ l1[i] = lev[i]; } for(i=(0);i<(N);i++){ A[i] = -A[i]; } reverse(A, A+N); len = LIS(N, A); for(i=(0);i<(N);i++){ l2[i] = lev[N-1-i]; } for(i=(0);i<(N);i++){ A[i] = -A[i]; } reverse(A, A+N); k = 0; for(i=(0);i<(N);i++){ if(l1[i] + l2[i] == len + 1){ arrInsert(k,k,lev,l1[i]-1,A,A[i]); } } N = k; for(i=(0);i<(N);i++){ d[lev[i]].push_back(A[i]); } for(i=(0);i<(len);i++){ r[i] = d[i].size(); f[i].walloc(r[i]); f[i].init(r[i]); } f[len-1].add(0, 1); for(i=(N-1)-1;i>=(0);i--){ k = lev[i]; r[k]--; int AlM5nNnR; int XJIcIBrW; int jPV_0s1p; AlM5nNnR = -1; XJIcIBrW = d[k+1].size()-1; while(AlM5nNnR < XJIcIBrW){ if((AlM5nNnR + XJIcIBrW)%2==0){ jPV_0s1p = (AlM5nNnR + XJIcIBrW) / 2; } else{ jPV_0s1p = (AlM5nNnR + XJIcIBrW + 1) / 2; } if(d[k+1][jPV_0s1p] > A[i]){ AlM5nNnR = jPV_0s1p; } else{ XJIcIBrW = jPV_0s1p - 1; } } j =XJIcIBrW; tmp = f[k+1].get(j); f[k].add(r[k],tmp); } wt_L(tmp); wt_L('\n'); return 0; } template<class T> void fenwick<T>::malloc(int mem){ memory = mem; data = (T*)std::malloc(sizeof(T)*mem); } template<class T> void fenwick<T>::walloc(int mem, void **workMemory /* = &wmem*/){ memory = mem; walloc1d(&data, mem, workMemory); } template<class T> void fenwick<T>::free(void){ memory = 0; free(data); } template<class T> void fenwick<T>::init(int N){ size = N; memset(data,0,sizeof(T)*N); } template<class T> void fenwick<T>::add(int k, T val){ while(k < size){ data[k] += val; k |= k+1; } } template<class T> T fenwick<T>::get(int k){ T res = 0; while(k>=0){ res += data[k]; k = (k&(k+1))-1; } return res; } template<class T> T fenwick<T>::range(int a, int b){ if(b==-1){ b=size-1; } return get(b) - get(a-1); } template<class T> int fenwick<T>::kth(T k){ int i=0; int j=size; int c; T v; while(i<j){ c = (i+j)/2; v = get(c); if(v <= k){ i=c+1; } else{ j=c; } } return i==size?-1:i; } // cLay varsion 20200214-1 // --- original code --- // int N, A[2d5+2]; // int l1[2d5+2], l2[2d5+2]; // // int arr[2d5+2], lev[2d5+2]; // fenwick<Modint> f[2d5+2]; // vector<int> d[2d5+2]; // int r[2d5+2]; // // int LIS(int n, int a[]){ // int i, k, res; // // arr[0] = a[0]; // lev[0] = 1; // res = 1; // REP(i,1,n){ // k = lower_bound(arr, arr+res, a[i]) - arr; // arr[k] = a[i]; // lev[i] = k + 1; // if(res==k) res++; // } // // return res; // } // // { // int i, j, k, len; // Modint tmp; // // rd(N, ((A+1))(N)); // N += 2; // A[0] = -int_inf; // A[N-1] = int_inf; // // len = LIS(N, A); // rep(i,N) l1[i] = lev[i]; // rep(i,N) A[i] = -A[i]; // reverse(A, A+N); // len = LIS(N, A); // rep(i,N) l2[i] = lev[N-1-i]; // rep(i,N) A[i] = -A[i]; // reverse(A, A+N); // // k = 0; // rep(i,N) if(l1[i] + l2[i] == len + 1){ // arrInsert(k,k,lev,l1[i]-1,A,A[i]); // } // N = k; // // rep(i,N) d[lev[i]].push_back(A[i]); // rep(i,len){ // r[i] = d[i].size(); // f[i].walloc(r[i]); // f[i].init(r[i]); // } // f[len-1].add(0, 1); // // rrep(i,N-1){ // k = lev[i]; // r[k]--; // j = bsearch_max[int,x,-1,d[k+1].size()-1](d[k+1][x] > A[i]); // tmp = f[k+1].get(j); // f[k].add(r[k],tmp); // } // wt(tmp); // }