結果

問題 No.992 最長増加部分列の数え上げ
ユーザー LayCurse
提出日時 2020-02-14 22:04:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 46 ms / 2,000 ms
コード長 10,274 bytes
コンパイル時間 3,325 ms
コンパイル使用メモリ 216,596 KB
最終ジャッジ日時 2025-01-09 00:14:04
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 42
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void *wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void wt_L(char a){
putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class S> inline void arrInsert(const int k, int &sz, S a[], const S aval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
a[k] = aval;
}
template<class S, class T> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
a[k] = aval;
b[k] = bval;
}
template<class S, class T, class U> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U cval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
for(i=sz-1;i>k;i--){
c[i] = c[i-1];
}
a[k] = aval;
b[k] = bval;
c[k] = cval;
}
template<class S, class T, class U, class V> inline void arrInsert(const int k, int &sz, S a[], const S aval, T b[], const T bval, U c[], const U
    cval, V d[], const V dval){
int i;
sz++;
for(i=sz-1;i>k;i--){
a[i] = a[i-1];
}
for(i=sz-1;i>k;i--){
b[i] = b[i-1];
}
for(i=sz-1;i>k;i--){
c[i] = c[i-1];
}
for(i=sz-1;i>k;i--){
d[i] = d[i-1];
}
a[k] = aval;
b[k] = bval;
c[k] = cval;
d[k] = dval;
}
template<class T> struct fenwick{
int size;
int memory;
T *data;
void malloc(int mem);
void walloc(int mem, void **workMemory = &wmem);
void free(void);
void init(int N);
void add(int k, T val);
T get(int k);
T range(int a, int b);
int kth(T k);
}
;
int N;
int A[200000+2];
int l1[200000+2];
int l2[200000+2];
int arr[200000+2];
int lev[200000+2];
fenwick<Modint> f[200000+2];
vector<int> d[200000+2];
int r[200000+2];
int LIS(int n, int a[]){
int i;
int k;
int res;
arr[0] = a[0];
lev[0] = 1;
res = 1;
int Lj4PdHRW = n;
for(i=(1);i<(Lj4PdHRW);i++){
k = lower_bound(arr, arr+res, a[i]) - arr;
arr[k] = a[i];
lev[i] = k + 1;
if(res==k){
res++;
}
}
return res;
}
int main(){
wmem = memarr;
int i;
int j;
int k;
int len;
Modint tmp;
rd(N);
{
int e98WHCEY;
for(e98WHCEY=(0);e98WHCEY<(N);e98WHCEY++){
rd((A+1)[e98WHCEY]);
}
}
N += 2;
A[0] = -1073709056;
A[N-1] = 1073709056;
len = LIS(N, A);
for(i=(0);i<(N);i++){
l1[i] = lev[i];
}
for(i=(0);i<(N);i++){
A[i] = -A[i];
}
reverse(A, A+N);
len = LIS(N, A);
for(i=(0);i<(N);i++){
l2[i] = lev[N-1-i];
}
for(i=(0);i<(N);i++){
A[i] = -A[i];
}
reverse(A, A+N);
k = 0;
for(i=(0);i<(N);i++){
if(l1[i] + l2[i] == len + 1){
arrInsert(k,k,lev,l1[i]-1,A,A[i]);
}
}
N = k;
for(i=(0);i<(N);i++){
d[lev[i]].push_back(A[i]);
}
for(i=(0);i<(len);i++){
r[i] = d[i].size();
f[i].walloc(r[i]);
f[i].init(r[i]);
}
f[len-1].add(0, 1);
for(i=(N-1)-1;i>=(0);i--){
k = lev[i];
r[k]--;
int AlM5nNnR;
int XJIcIBrW;
int jPV_0s1p;
AlM5nNnR = -1;
XJIcIBrW = d[k+1].size()-1;
while(AlM5nNnR < XJIcIBrW){
if((AlM5nNnR + XJIcIBrW)%2==0){
jPV_0s1p = (AlM5nNnR + XJIcIBrW) / 2;
}
else{
jPV_0s1p = (AlM5nNnR + XJIcIBrW + 1) / 2;
}
if(d[k+1][jPV_0s1p] > A[i]){
AlM5nNnR = jPV_0s1p;
}
else{
XJIcIBrW = jPV_0s1p - 1;
}
}
j =XJIcIBrW;
tmp = f[k+1].get(j);
f[k].add(r[k],tmp);
}
wt_L(tmp);
wt_L('\n');
return 0;
}
template<class T> void fenwick<T>::malloc(int mem){
memory = mem;
data = (T*)std::malloc(sizeof(T)*mem);
}
template<class T> void fenwick<T>::walloc(int mem, void **workMemory /* = &wmem*/){
memory = mem;
walloc1d(&data, mem, workMemory);
}
template<class T> void fenwick<T>::free(void){
memory = 0;
free(data);
}
template<class T> void fenwick<T>::init(int N){
size = N;
memset(data,0,sizeof(T)*N);
}
template<class T> void fenwick<T>::add(int k, T val){
while(k < size){
data[k] += val;
k |= k+1;
}
}
template<class T> T fenwick<T>::get(int k){
T res = 0;
while(k>=0){
res += data[k];
k = (k&(k+1))-1;
}
return res;
}
template<class T> T fenwick<T>::range(int a, int b){
if(b==-1){
b=size-1;
}
return get(b) - get(a-1);
}
template<class T> int fenwick<T>::kth(T k){
int i=0;
int j=size;
int c;
T v;
while(i<j){
c = (i+j)/2;
v = get(c);
if(v <= k){
i=c+1;
}
else{
j=c;
}
}
return i==size?-1:i;
}
// cLay varsion 20200214-1
// --- original code ---
// int N, A[2d5+2];
// int l1[2d5+2], l2[2d5+2];
//
// int arr[2d5+2], lev[2d5+2];
// fenwick<Modint> f[2d5+2];
// vector<int> d[2d5+2];
// int r[2d5+2];
//
// int LIS(int n, int a[]){
// int i, k, res;
//
// arr[0] = a[0];
// lev[0] = 1;
// res = 1;
// REP(i,1,n){
// k = lower_bound(arr, arr+res, a[i]) - arr;
// arr[k] = a[i];
// lev[i] = k + 1;
// if(res==k) res++;
// }
//
// return res;
// }
//
// {
// int i, j, k, len;
// Modint tmp;
//
// rd(N, ((A+1))(N));
// N += 2;
// A[0] = -int_inf;
// A[N-1] = int_inf;
//
// len = LIS(N, A);
// rep(i,N) l1[i] = lev[i];
// rep(i,N) A[i] = -A[i];
// reverse(A, A+N);
// len = LIS(N, A);
// rep(i,N) l2[i] = lev[N-1-i];
// rep(i,N) A[i] = -A[i];
// reverse(A, A+N);
//
// k = 0;
// rep(i,N) if(l1[i] + l2[i] == len + 1){
// arrInsert(k,k,lev,l1[i]-1,A,A[i]);
// }
// N = k;
//
// rep(i,N) d[lev[i]].push_back(A[i]);
// rep(i,len){
// r[i] = d[i].size();
// f[i].walloc(r[i]);
// f[i].init(r[i]);
// }
// f[len-1].add(0, 1);
//
// rrep(i,N-1){
// k = lev[i];
// r[k]--;
// j = bsearch_max[int,x,-1,d[k+1].size()-1](d[k+1][x] > A[i]);
// tmp = f[k+1].get(j);
// f[k].add(r[k],tmp);
// }
// wt(tmp);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0