結果

問題 No.988 N×Mマス計算(総和)
ユーザー knshnbknshnb
提出日時 2020-02-14 22:10:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 26 ms / 2,000 ms
コード長 4,367 bytes
コンパイル時間 1,921 ms
コンパイル使用メモリ 214,268 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-06 07:17:31
合計ジャッジ時間 2,887 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 8 ms
5,376 KB
testcase_11 AC 12 ms
5,376 KB
testcase_12 AC 18 ms
5,376 KB
testcase_13 AC 10 ms
5,376 KB
testcase_14 AC 9 ms
5,376 KB
testcase_15 AC 8 ms
5,376 KB
testcase_16 AC 16 ms
5,376 KB
testcase_17 AC 20 ms
5,376 KB
testcase_18 AC 12 ms
5,376 KB
testcase_19 AC 18 ms
5,376 KB
testcase_20 AC 26 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>  // clang-format off
#define int long long
using namespace std;
using Int = long long;
#define REP2(i, n) for (Int i = 0, max_i = (n); i < max_i; i++)
#define REP3(i, a, b) for (Int i = (a), max_i = (b); i < max_i; i++)
#define OVERLOAD2(_1, _2, _3, name, ...) name
#define REP(...) OVERLOAD2(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
struct SetupIO { SetupIO() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(13); } } setup_io;
#ifndef _MY_DEBUG
#define dump(...)
#endif  // clang-format on

/**
 *    author:  knshnb
 *    created: Fri Feb 14 21:57:54 JST 2020
 **/

template <class T> T pow(T x, int n, const T UNION = 1) {
    T ret = UNION;
    while (n) {
        if (n & 1) ret *= x;
        x *= x;
        n >>= 1;
    }
    return ret;
}

// ModInt::set_mod(m)してから使う
struct ModInt {
    static int MD;
    static map<pair<int, int>, int> tbl_pow;
    static void set_mod(int mod) {
        MD = mod;
        tbl_pow.clear();
    }
    int x;
    ModInt() : x(0) {}
    ModInt(int x_) {
        if ((x = x_ % MD + MD) >= MD) x -= MD;
    }

    ModInt& operator+=(ModInt that) {
        if ((x += that.x) >= MD) x -= MD;
        return *this;
    }
    ModInt& operator*=(ModInt that) {
        x = (unsigned long long)x * that.x % MD;
        return *this;
    }
    ModInt& operator-=(ModInt that) {
        if ((x -= that.x) < 0) x += MD;
        return *this;
    }
    ModInt& operator/=(ModInt that) {
        x = (unsigned long long)x * that.inv().x % MD;
        return *this;
    }

    ModInt operator-() const { return -x < 0 ? MD - x : -x; }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt inv() const { return pow(*this, MD - 2); }
    friend ostream& operator<<(ostream& s, ModInt a) {
        s << a.x;
        return s;
    }
    friend istream& operator>>(istream& s, ModInt& a) {
        s >> a.x;
        return s;
    }

    // 計算結果をmapに保存するべき乗
    ModInt save_pow(int n) const {
        if (tbl_pow.count({x, n})) return tbl_pow[{x, n}];
        if (n == 0) return 1;
        if (n % 2) return tbl_pow[{x, n}] = (*this * save_pow(n - 1)).x;
        return tbl_pow[{x, n}] = (save_pow(n / 2) * save_pow(n / 2)).x;
    }
    // 1 + r + r^2 + ... + r^(n-1)
    static ModInt geometric_progression(ModInt r, int n) {
        if (n == 0) return 0;
        if (n % 2) return geometric_progression(r, n - 1) + r.save_pow(n - 1);
        return geometric_progression(r, n / 2) * (r.save_pow(n / 2) + 1);
    }
    // a + r * (a - d) + r^2 * (a - 2d) + ... + r^(n-1) * (a - (n - 1)d)
    static ModInt linear_sum(ModInt r, ModInt a, ModInt d, int n) {
        if (n == 0) return 0;
        if (n % 2) return linear_sum(r, a, d, n - 1) + r.save_pow(n - 1) * (a - d * (n - 1));
        return linear_sum(r, a, d, n / 2) * (r.save_pow(n / 2) + 1) -
               d * (n / 2) * r.save_pow(n / 2) * geometric_progression(r, n / 2);
    }
};
int ModInt::MD = 1000000007;
using mint = ModInt;
map<pair<int, int>, int> mint::tbl_pow;

vector<mint> fact, fact_inv;
void init_factorial(int n) {
    fact = vector<mint>(n + 1, 1);
    fact_inv = vector<mint>(n + 1);
    for (int i = 0; i < n; i++) fact[i + 1] = fact[i] * (i + 1);
    fact_inv[n] = mint(1) / fact[n];
    for (int i = n - 1; i >= 0; i--) fact_inv[i] = fact_inv[i + 1] * (i + 1);
    // for (int i = 0; i < n + 1; i++) assert(fact[i] * fact_inv[i] == 1);
}
mint comb(int n, int r) { return fact[n] * fact_inv[r] * fact_inv[n - r]; }


signed main() {
    Int n, m, K;
    cin >> n >> m >> K;
    mint::set_mod(K);
    char op;
    cin >> op;
    vector<Int> b(m);
    REP(j, m) cin >> b[j];
    vector<Int> a(n);
    REP(i, n) cin >> a[i];
    mint ans = 0;
    if (op == '+') {
        REP(i, n) ans += m * a[i];
        REP(j, m) ans += n * b[j];
    } else {
        mint A = 0;
        REP(i, n) A += a[i];
        mint B = 0;
        REP(j, m) B += b[j];
        ans = A * B;
    }
    cout << ans << endl;
}
0