結果

問題 No.990 N×Mマス計算(Kの倍数)
ユーザー azz
提出日時 2020-02-14 22:33:00
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 842 ms / 2,000 ms
コード長 5,354 bytes
コンパイル時間 2,558 ms
コンパイル使用メモリ 199,988 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-16 00:58:40
合計ジャッジ時間 7,221 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 19
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
# define REP(i,n) for (int i=0;i<(n);++i)
# define rep(i,a,b) for(int i=a;i<(b);++i)
# define all(v) v.begin(),v.end()
# define showVector(v) REP(i,v.size()){cout << (v[i]) << " ";} cout << endl;
template<class T> inline bool chmin(T &a, T b){ if(a > b) { a = b; return true;} return false;}
template<class T> inline bool chmax(T &a, T b){ if(a < b) { a = b; return true;} return false;}
typedef long long int ll;
typedef pair<ll,ll> P_ii;
typedef pair<double,double> P_dd;
template<class T>
vector<T> make_vec(size_t a){
return vector<T>(a);
}
template<class T, class... Ts>
auto make_vec(size_t a, Ts... ts){
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
template<typename T,typename V>
typename enable_if<is_class<T>::value==0>::type
fill_v(T &t,const V &v){t=v;}
template<typename T,typename V>
typename enable_if<is_class<T>::value!=0>::type
fill_v(T &t,const V &v){
for(auto &e:t) fill_v(e,v);
}
ll gcd(ll a, ll b) {
if(a < b) swap(a,b);
if(b == 0) return a;
return gcd(b, a % b);
}
ll lcm(ll a, ll b){
ll g = gcd(a,b);
return (a/g)*b;
}
// O(√n)
bool is_prime(int n){
for(int i = 2; i * i <= n; i++){
if(n % i == 0) return false;
}
return true;
}
// O(√n)
vector<ll> divisor(ll n){
vector<ll> res;
for(ll i = 1; i * i <= n; i++){
if(n % i == 0){
res.push_back(i);
if(i != n / i) res.push_back(n / i);
}
}
return res;
}
map<ll, ll> prime_factorize(ll n) {
map<ll, ll> res;
for (ll p = 2; p * p <= n; ++p) {
if (n % p != 0) continue;
ll num = 0;
while (n % p == 0) { ++num; n /= p; }
res[p] = num;
}
if (n != 1) res[n] = 1;
return res;
}
// auto mod int
// https://youtu.be/L8grWxBlIZ4?t=9858
// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize
// https://youtu.be/8uowVvQ_-Mo?t=1329 : division
const int mod = 1000000007;
struct mint {
ll x; // typedef long long ll;
mint(ll x=0):x(x%mod){}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
mint res(*this);
return res+=a;
}
mint operator-(const mint a) const {
mint res(*this);
return res-=a;
}
mint operator*(const mint a) const {
mint res(*this);
return res*=a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod-2);
}
mint& operator/=(const mint a) {
return (*this) *= a.inv();
}
mint operator/(const mint a) const {
mint res(*this);
return res/=a;
}
};
const int MOD = 1000000007;
const int inf=1e9+7;
const ll longinf=1LL<<60 ;
void addM(ll &a, ll b) {
a += b;
if (a >= MOD) a -= MOD;
}
void mulM(ll &a, ll b) {
a = ((a%MOD)*(b%MOD))%MOD ;
}
ll powM(ll a,ll b) {
ll ret = 1;
ll tmp = a;
while(b>0) {
if((b&1)==1) ret = (ret * tmp) % MOD;
tmp = (tmp * tmp) % MOD;
b = b >> 1;
}
return ret;
}
// mod. m a a^{-1}
ll modinv(ll a, ll m) {
ll b = m, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
//
vector<pair<char, int>> rang_com(string s){
vector<pair<char, int>> ret;
string t = s;
t.erase(unique(all(t)), t.end());
int now = 0;
int pre = 0;
for(auto ct : t){
while(now < s.size() && s[now] == ct) now++;
if(ret.size() == 0){
ret.push_back({ct, now});
} else {
ret.push_back({ct, now - pre});
}
pre = now;
}
return ret;
}
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
int N, M;
cin >> N >> M;
ll K;
cin >> K;
char op;
cin >> op;
vector<ll> a(N), b(M);
REP(i, M) cin >> b[i];
REP(i, N) cin >> a[i];
ll ans = 0;
if(op == '+'){
REP(i, M) b[i] %= K;
sort(all(b));
REP(i, N){
ll val = (K - a[i] % K) % K;
ans += upper_bound(all(b), val) - lower_bound(all(b), val);
}
} else {
auto pf = prime_factorize(K);
vector<P_ii> vec;
for(auto m : pf) vec.push_back({m.first, m.second});
map<vector<int>, ll> mp1, mp2;
REP(i, M){
auto pfb = prime_factorize(b[i]);
vector<int> v(vec.size());
REP(i, vec.size()){
v[i] = min(pfb[vec[i].first], vec[i].second);
}
mp1[v]++;
}
REP(i, N){
auto pfa = prime_factorize(a[i]);
vector<int> v(vec.size());
REP(i, vec.size()){
v[i] = min(pfa[vec[i].first], vec[i].second);
}
mp2[v]++;
}
for(auto m1 : mp1){
auto v1 = m1.first;
for(auto m2 : mp2){
auto v2 = m2.first;
bool chk = true;
REP(i, vec.size()){
if(vec[i].second > v1[i] + v2[i]){
chk = false;
break;
}
}
if(chk) ans += m1.second * m2.second;
}
}
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0