結果

問題 No.988 N×Mマス計算(総和)
ユーザー BSerBSer
提出日時 2020-02-15 00:18:43
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,302 bytes
コンパイル時間 1,647 ms
コンパイル使用メモリ 182,352 KB
実行使用メモリ 13,760 KB
最終ジャッジ日時 2024-07-06 07:21:29
合計ジャッジ時間 5,295 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
13,760 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 1 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 TLE -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using Edge = int;
using Graph = vector<vector<Edge>>;
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define SORT(v) sort((v).begin(), (v).end())
#define RSORT(v) sort((v).rbegin(), (v).rend())
const ll MOD = 1000000007;
const ll nmax = 8;
const ll INF = 1e9;
const int MAX = 510000;
bool graph[nmax][nmax];
long long fac[MAX], finv[MAX], inv[MAX];

void COMinit()
{
    fac[0] = fac[1] = 1;
    finv[0] = finv[1] = 1;
    inv[1] = 1;
    for (int i = 2; i < MAX; i++)
    {
        fac[i] = fac[i - 1] * i % MOD;
        inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
        finv[i] = finv[i - 1] * inv[i] % MOD;
    }
}

ll COM(int n, int k)
{
    if (n < k)
        return 0;
    if (n < 0 || k < 0)
        return 0;

    return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}

vector<vector<ll>> dist = vector<vector<ll>>(nmax, vector<ll>(nmax, INF));
struct SegmentTree
{
private:
    ll n;
    vector<ll> node;

public:
    SegmentTree(vector<ll> v)
    {
        ll sz = v.size();
        n = 1;
        while (n < sz)
        {
            n *= 2;
        }
        node.resize(2 * n - 1, INF);

        for (ll i = 0; i < sz; i++)
        {
            node[i + n - 1] = v[i];
        }

        for (ll i = n - 2; i >= 0; i--)
        {
            node[i] = min(node[2 * i + 1], node[2 * i + 2]);
        }
    }
    void update(ll x, ll val)
    {
        x += (n - 1);
        node[x] = val;
        while (x > 0)
        {
            x = (x - 1) / 2;
            node[x] = min(node[2 * x + 1], node[2 * x + 2]);
        }
    }

    // findは半開区間で考える
    ll find(ll a, ll b, ll k = 0, ll l = 0, ll r = -1)
    {
        if (r < 0)
            r = n;

        if (r <= a || b <= l)
            return INF;

        if (a <= l && r <= b)
            return node[k];

        ll vl = find(a, b, 2 * k + 1, l, (l + r) / 2);
        ll vr = find(a, b, 2 * k + 2, (l + r) / 2, r);
        return min(vl, vr);
    }
};
void warshall_floyd(ll n)
{
    for (size_t i = 0; i < n; i++)
    {
        for (size_t j = 0; j < n; j++)
        {
            for (size_t k = 0; k < n; k++)
            {
                dist[j][k] = min(dist[j][k], dist[j][i] + dist[i][k]);
            }
        }
    }
}

class UnionFind
{
public:
    vector<ll> Parent;

    UnionFind(ll N)
    {
        Parent = vector<ll>(N, -1);
    }
    ll find(ll A)
    {
        if (Parent[A] < 0)
            return A;
        return Parent[A] = find(Parent[A]);
    }

    ll size(ll A)
    {
        return -Parent[find(A)];
    }

    bool Union(ll A, ll B)
    {
        A = find(A);
        B = find(B);
        if (A == B)
        {
            return false;
        }
        if (size(A) < size(B))
            swap(A, B);

        Parent[A] += Parent[B];
        Parent[B] = A;

        return true;
    }
};

ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    ll g = gcd(a, b);
    return a / g * b;
}

ll mulMod(ll a, ll b)
{
    return (((a % MOD) * (b % MOD)) % MOD);
}

ll powMod(ll a, ll p)
{
    if (p == 0)
    {
        return 1;
    }
    else if (p % 2 == 0)
    {
        ll half = powMod(a, p / 2);
        return mulMod(half, half);
    }
    else
    {
        return mulMod(powMod(a, p - 1), a);
    }
}

ll ceil(ll a, ll b)
{
    return (a + b - 1) / b;
}

vector<ll> tsort(Graph G)
{
    ll N = G.size();
    vector<ll> in(N);
    for (auto &&edges : G)
    {
        for (auto &&edge : edges)
        {
            in[edge]++;
        }
    }

    queue<int> que;

    for (int i = 0; i < N; i++)
    {
        if (in[i] == 0)
        {
            que.push(i);
        }
    }
    int cnt = 0;
    vector<ll> ans;
    while (!que.empty())
    {
        int v = que.front();
        que.pop();
        ans.push_back(v);
        for (auto &&next : G[v])
        {

            in[next]--;
            if (in[next] == 0)
            {
                que.push(next);
            }
        }
    }
    return ans;
}
Graph G(100);
void treeDFS(int from, int current, int dist, int &maxDist, int &maxVertex)
{
    if (dist > maxDist)
    {
        maxDist = dist;
        maxVertex = current;
    }

    for (auto to : G[current])
    {
        if (to == from)
            continue;
        treeDFS(current, to, dist + 1, maxDist, maxVertex);
    }
}

pair<int, int> getTreeDiameter()
{
    int start = 0, end = 0, maxDist = 0;
    treeDFS(-1, start, 0, maxDist, end);
    start = end, end = 0, maxDist = 0;
    treeDFS(-1, start, 0, maxDist, end);
    return make_pair(start, end);
}

void solve(long long H, long long W)
{
}

int main()
{
    ll N, M, K;
    string op;
    cin >> N >> M >> K >> op;

    vector<ll> B(M);
    vector<ll> A(N);
    for (int i = 0; i < M; i++)
    {
        cin >> B[i];
    }
    for (int i = 0; i < N; i++)
    {
        cin >> A[i];
    }
    ll ans = 0;
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            if (op == "+")
            {
                ans += A[i] + B[j];
                ans %= K;
            }
            else
            {
                ans += A[i] * B[j];
                ans %= K;
            }
        }
    }
    cout << ans << endl;
    return 0;
}
0