結果
| 問題 |
No.8046 yukicoderの過去問
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2020-02-15 01:24:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 161 ms / 2,000 ms |
| コード長 | 13,138 bytes |
| コンパイル時間 | 2,958 ms |
| コンパイル使用メモリ | 214,620 KB |
| 最終ジャッジ日時 | 2025-01-09 00:38:35 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/2744"
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
struct FastIO{
FastIO(){
cin.tie(0);
ios::sync_with_stdio(0);
}
}fastio_beet;
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T,T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed ABC127_E(){
cin.tie(0);
ios::sync_with_stdio(0);
int h,w,k;
cin>>h>>w>>k;
using M = Mint<int>;
M ans{0};
for(int d=1;d<h;d++)
ans+=M(d)*M(h-d)*M(w)*M(w);
for(int d=1;d<w;d++)
ans+=M(d)*M(w-d)*M(h)*M(h);
ans*=M::comb(h*w-2,k-2);
cout<<ans<<endl;
return 0;
}
/*
verified on 2019/06/12
https://atcoder.jp/contests/abc127/tasks/abc127_e
*/
signed main(){
//ABC127_E();
return 0;
}
#endif
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
namespace FFT{
using dbl = double;
struct num{
dbl x,y;
num(){x=y=0;}
num(dbl x,dbl y):x(x),y(y){}
};
inline num operator+(num a,num b){
return num(a.x+b.x,a.y+b.y);
}
inline num operator-(num a,num b){
return num(a.x-b.x,a.y-b.y);
}
inline num operator*(num a,num b){
return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
inline num conj(num a){
return num(a.x,-a.y);
}
int base=1;
vector<num> rts={{0,0},{1,0}};
vector<int> rev={0,1};
const dbl PI=asinl(1)*2;
void ensure_base(int nbase){
if(nbase<=base) return;
rev.resize(1<<nbase);
for(int i=0;i<(1<<nbase);i++)
rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));
rts.resize(1<<nbase);
while(base<nbase){
dbl angle=2*PI/(1<<(base+1));
for(int i=1<<(base-1);i<(1<<base);i++){
rts[i<<1]=rts[i];
dbl angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
}
base++;
}
}
void fft(vector<num> &as){
int n=as.size();
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for(int i=0;i<n;i++)
if(i<(rev[i]>>shift))
swap(as[i],as[rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
num z=as[i+j+k]*rts[j+k];
as[i+j+k]=as[i+j]-z;
as[i+j]=as[i+j]+z;
}
}
}
}
template<typename T>
vector<long long> multiply(vector<T> &as,vector<T> &bs){
int need=as.size()+bs.size()-1;
int nbase=0;
while((1<<nbase)<need) nbase++;
ensure_base(nbase);
int sz=1<<nbase;
vector<num> fa(sz);
for(int i=0;i<sz;i++){
T x=(i<(int)as.size()?as[i]:0);
T y=(i<(int)bs.size()?bs[i]:0);
fa[i]=num(x,y);
}
fft(fa);
num r(0,-0.25/sz);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
if(i!=j)
fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
fa[i]=z;
}
fft(fa);
vector<long long> res(need);
for(int i=0;i<need;i++)
res[i]=round(fa[i].x);
return res;
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#include "fastfouriertransform.cpp"
#undef call_from_test
#endif
//BEGIN CUT HERE
template<typename T>
struct ArbitraryMod{
using dbl=FFT::dbl;
using num=FFT::num;
vector<T> multiply(vector<T> as,vector<T> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
vector<num> fa(sz),fb(sz);
for(int i=0;i<(int)as.size();i++)
fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15);
for(int i=0;i<(int)bs.size();i++)
fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15);
fft(fa);fft(fb);
dbl ratio=0.25/sz;
num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num a1=(fa[i]+conj(fa[j]));
num a2=(fa[i]-conj(fa[j]))*r2;
num b1=(fb[i]+conj(fb[j]))*r3;
num b2=(fb[i]-conj(fb[j]))*r4;
if(i!=j){
num c1=(fa[j]+conj(fa[i]));
num c2=(fa[j]-conj(fa[i]))*r2;
num d1=(fb[j]+conj(fb[i]))*r3;
num d2=(fb[j]-conj(fb[i]))*r4;
fa[i]=c1*d1+c2*d2*r5;
fb[i]=c1*d2+c2*d1;
}
fa[j]=a1*b1+a2*b2*r5;
fb[j]=a1*b2+a2*b1;
}
fft(fa);fft(fb);
vector<T> cs(need);
using ll = long long;
for(int i=0;i<need;i++){
ll aa=T(llround(fa[i].x)).v;
ll bb=T(llround(fb[i].x)).v;
ll cc=T(llround(fa[i].y)).v;
cs[i]=T(aa+(bb<<15)+(cc<<30));
}
return cs;
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T>
struct FormalPowerSeries{
using Poly = vector<T>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
FormalPowerSeries(Conv conv):conv(conv){}
Poly pre(const Poly &as,int deg){
return Poly(as.begin(),as.begin()+min((int)as.size(),deg));
}
Poly add(Poly as,Poly bs){
int sz=max(as.size(),bs.size());
Poly cs(sz,T(0));
for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];
return cs;
}
Poly sub(Poly as,Poly bs){
int sz=max(as.size(),bs.size());
Poly cs(sz,T(0));
for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];
return cs;
}
Poly mul(Poly as,Poly bs){
return conv(as,bs);
}
Poly mul(Poly as,T k){
for(auto &a:as) a*=k;
return as;
}
// F(0) must not be 0
Poly inv(Poly as,int deg){
assert(as[0]!=T(0));
Poly rs({T(1)/as[0]});
for(int i=1;i<deg;i<<=1)
rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);
return rs;
}
// not zero
Poly div(Poly as,Poly bs){
while(as.back()==T(0)) as.pop_back();
while(bs.back()==T(0)) bs.pop_back();
if(bs.size()>as.size()) return Poly();
reverse(as.begin(),as.end());
reverse(bs.begin(),bs.end());
int need=as.size()-bs.size()+1;
Poly ds=pre(mul(as,inv(bs,need)),need);
reverse(ds.begin(),ds.end());
return ds;
}
Poly mod(Poly as,Poly bs){
if(as==Poly(as.size(),0)) return Poly({0});
as=sub(as,mul(div(as,bs),bs));
if(as==Poly(as.size(),0)) return Poly({0});
while(as.back()==T(0)) as.pop_back();
return as;
}
// F(0) must be 1
Poly sqrt(Poly as,int deg){
assert(as[0]==T(1));
T inv2=T(1)/T(2);
Poly ss({T(1)});
for(int i=1;i<deg;i<<=1){
ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1);
for(T &x:ss) x*=inv2;
}
return ss;
}
Poly diff(Poly as){
int n=as.size();
Poly rs(n-1);
for(int i=1;i<n;i++) rs[i-1]=as[i]*T(i);
return rs;
}
Poly integral(Poly as){
int n=as.size();
Poly rs(n+1);
rs[0]=T(0);
for(int i=0;i<n;i++) rs[i+1]=as[i]/T(i+1);
return rs;
}
// F(0) must be 1
Poly log(Poly as,int deg){
return pre(integral(mul(diff(as),inv(as,deg))),deg);
}
// F(0) must be 0
Poly exp(Poly as,int deg){
Poly f({T(1)});
as[0]+=T(1);
for(int i=1;i<deg;i<<=1)
f=pre(mul(f,sub(pre(as,i<<1),log(f,i<<1))),i<<1);
return f;
}
Poly partition(int n){
Poly rs(n+1);
rs[0]=T(1);
for(int k=1;k<=n;k++){
if(1LL*k*(3*k+1)/2<=n) rs[k*(3*k+1)/2]+=T(k%2?-1LL:1LL);
if(1LL*k*(3*k-1)/2<=n) rs[k*(3*k-1)/2]+=T(k%2?-1LL:1LL);
}
return inv(rs,n+1);
}
Poly bernoulli(int n){
Poly rs(n+1,1);
for(int i=1;i<=n;i++) rs[i]=rs[i-1]/T(i+1);
rs=inv(rs,n+1);
T tmp(1);
for(int i=1;i<=n;i++){
tmp*=T(i);
rs[i]*=tmp;
}
return rs;
}
};
//END CUT HERE
#ifndef call_from_test
#define call_from_test
#include "../mod/mint.cpp"
#include "../convolution/numbertheoretictransform.cpp"
#include "../mod/sqrt.cpp"
#include "../tools/fastio.cpp"
#undef call_from_test
//INSERT ABOVE HERE
signed HAPPYQUERY_E(){
int n,m,q;
cin>>n>>m>>q;
vector<int> ls(q),rs(q);
for(int i=0;i<q;i++) cin>>ls[i]>>rs[i],ls[i]--;
vector<int> as(n);
for(int i=0;i<n;i++) cin>>as[i];
if(as==vector<int>(n,0)){
for(int i=0;i<m;i++){
if(i) cout<<" ";
cout<<0;
}
cout<<endl;
return 0;
}
vector<int> cs(n-m+1,0);
for(int l:ls) cs[l]++;
NTT<0> ntt;
using M = NTT<0>::M;
auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};
FormalPowerSeries<M> FPS(conv);
vector<M> ps(as.size()),qs(cs.size());
for(int i=0;i<(int)ps.size();i++) ps[i]=M(as[i]);
for(int i=0;i<(int)qs.size();i++) qs[i]=M(cs[i]);
auto bs=FPS.div(ps,qs);
for(int i=0;i<m;i++){
if(i) cout<<" ";
cout<<bs[i];
}
cout<<endl;
return 0;
}
/*
verified on 2019/09/17
https://www.hackerrank.com/contests/happy-query-contest/challenges/array-restoring
*/
signed CFR250_E(){
int n,m;
cin>>n>>m;
vector<int> cs(n);
for(int i=0;i<n;i++) cin>>cs[i];
NTT<2> ntt;
using M = NTT<2>::M;
auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};
FormalPowerSeries<M> FPS(conv);
const int deg=1<<18;
vector<M> as(deg,0);
as[0]=M(1);
for(int c:cs) as[c]-=M(4);
auto bs=FPS.sqrt(as,deg);
bs[0]+=M(1);
vector<M> vs({2});
auto ans=FPS.mul(vs,FPS.inv(bs,deg));
for(int i=1;i<=m;i++) cout<<ans[i]<<"\n";
cout<<flush;
return 0;
}
/*
verified on 2019/09/17
https://codeforces.com/contest/438/problem/E
*/
signed LOJ_150(){
NTT<2> ntt;
using M = NTT<2>::M;
auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};
FormalPowerSeries<M> FPS(conv);
int n,k;
cin>>n>>k;
vector<M> F(n+1);
for(int i=0;i<=n;i++) cin>>F[i].v;
const int deg = 1<<17;
auto as=FPS.log(FPS.mul(F,F[0].inv()),deg);
auto bs=FPS.exp(FPS.mul(as,M((ntt.md-1)/2)),deg);
M s(mod_sqrt(F[0].v,ntt.md)[0]);
auto cs=FPS.integral(FPS.mul(bs,s.inv()));
auto ds=FPS.exp(cs,deg);
auto es=FPS.sub(F,ds);
es[0]+=M(2);
es[0]-=F[0];
auto fs=FPS.log(es,deg);
fs[0]+=M(1);
auto gs=FPS.log(fs,deg);
auto hs=FPS.mul(gs,M(k));
auto is=FPS.exp(hs,deg);
auto G=FPS.diff(is);
for(int i=0;i<n;i++){
if(i) cout<<" ";
cout<<G[i];
}
cout<<endl;
return 0;
}
/*
verified on 2019/09/17
https://loj.ac/problem/150
*/
signed CODECHEF_PSUM(){
NTT<2> ntt;
using M = NTT<2>::M;
auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);};
FormalPowerSeries<M> FPS(conv);
int n,s,k;
cin>>n>>s>>k;
vector<int> cs(n),vs(n);
for(int i=0;i<n;i++) cin>>cs[i]>>vs[i];
const int deg = 1<<11;
vector< vector<M> > dp(s+1,vector<M>(deg,0));
dp[0][0]=M(1);
auto nx=dp;
for(int i=0;i<n;i++){
auto ps=FPS.exp(vector<M>({M(0),M(vs[i])}),deg);
for(int j=0;j+cs[i]<=s;j++){
auto rs=FPS.mul(ps,dp[j]);
for(int l=0;l<deg;l++) nx[j+cs[i]][l]+=rs[l];
}
dp=nx;
}
M ans{0};
for(int i=1;i<=s;i++) ans+=dp[i][k];
for(int i=1;i<=k;i++) ans*=M(i);
cout<<ans<<endl;
return 0;
}
/*
verified on 2019/09/24
https://www.codechef.com/problems/PSUM
*/
signed main(){
//HAPPYQUERY_E();
//CFR250_E();
//LOJ_150();
//CODECHEF_PSUM();
return 0;
}
#endif
#undef call_from_test
signed main(){
int k,n;
cin>>k>>n;
vector<int> xs(n);
for(int i=0;i<n;i++) cin>>xs[i];
using M = Mint<int>;
ArbitraryMod<M> arb;
auto conv=[&](auto as,auto bs){return arb.multiply(as,bs);};
FormalPowerSeries<M> FPS(conv);
const int sz=1<<17;
vector<M> bs(sz,M(0));
bs[0]=1;
for(int x:xs) bs[x]-=M(1);
cout<<FPS.inv(bs,k+1)[k]<<endl;
return 0;
}
beet