結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | Series_205 |
提出日時 | 2020-02-21 20:53:13 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 2,844 bytes |
コンパイル時間 | 2,621 ms |
コンパイル使用メモリ | 211,648 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-08 20:04:16 |
合計ジャッジ時間 | 3,384 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> #define FOR(i, a, n) for(ll i = (ll)a; i < (ll)n; i++) #define rep(i, n) FOR(i, 0, n) #define ALL(x) (x).begin(), (x).end() using namespace std; typedef long long ll; constexpr ll mod = 1e9 + 7; template <class T> inline bool chmax(T &a, const T b) { if(a >= b) return false; a = b; return true; } template <class T> inline bool chmin(T &a, const T b) { if(a <= b) return false; a = b; return true; } /*-------------------------------------------*/ ll N, M; template <typename T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)) {} size_t height() const { return A.size(); } size_t width() const { return A[0].size(); } inline const vector<T> &operator[](int k) const { return A.at(k); } inline vector<T> &operator[](int k) { return A.at(k); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return mat; } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += M - B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) (C[i][j] += (*this)[i][k] * B[k][j]) %= M; A.swap(C); return (*this); } Matrix &operator^=(int64_t k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= (*this); (*this) *= (*this); k >>= 1LL; } A.swap(B.A); return (*this); } Matrix &operator+(const Matrix &B) const { return Matrix(*this) += B; } Matrix &operator-(const Matrix &B) const { return Matrix(*this) -= B; } Matrix &operator*(const Matrix &B) const { return Matrix(*this) *= B; } Matrix &operator^(const int64_t k) const { return Matrix(*this) ^= k; } }; int main() { cin.tie(0); ios::sync_with_stdio(0); Matrix<ll> A(2, 1), B(2); A.A = {{0}, {1}}; B.A = {{0, 1}, {1, 1}}; cin >> N >> M; B ^= (N - 1); B *= A; cout << B[0][0] << endl; return 0; }