結果

問題 No.995 タピオカオイシクナーレ
ユーザー LayCurseLayCurse
提出日時 2020-02-21 21:27:52
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 9,720 bytes
コンパイル時間 2,465 ms
コンパイル使用メモリ 214,824 KB
最終ジャッジ日時 2025-01-09 01:25:49
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void *wmem;
char memarr[96000000];
template<class S, class T> inline S min_L(S a,T b){
return a<=b?a:b;
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void rd(long long &x){
int k;
int m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void wt_L(char a){
putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T> struct Matrix{
int r;
int c;
int mem;
T *dat;
Matrix(){
r=c=mem = 0;
}
Matrix(const int rr, const int cc){
if(rr == 0 || cc == 0){
r = c = 0;
}
else{
r = rr;
c = cc;
}
mem = r * c;
if(mem > 0){
dat = new T[mem];
}
}
Matrix(const Matrix<T> &a){
int i;
r = a.r;
c = a.c;
mem = r * c;
dat = new T[mem];
for(i=(0);i<(mem);i++){
dat[i] = a.dat[i];
}
}
~Matrix(){
if(mem){
delete [] dat;
}
}
void changeSize(const int rr, const int cc){
if(rr==0 || cc==0){
r = c = 0;
}
else{
r = rr;
c = cc;
}
if(mem < r*c){
if(mem){
delete [] dat;
}
mem = r*c;
dat = new T[mem];
}
}
Matrix<T>& operator=(const Matrix<T> &a){
int i;
int j;
r = a.r;
c = a.c;
j = r * c;
changeSize(r,c);
for(i=(0);i<(j);i++){
dat[i] = a.dat[i];
}
return *this;
}
Matrix<T>& operator=(const int a){
int i;
int j;
j = r * c;
for(i=(0);i<(j);i++){
dat[i] = 0;
}
j =min_L(r, c);
for(i=(0);i<(j);i++){
dat[i*c+i] = a;
}
return *this;
}
Matrix<T>& operator+=(const Matrix<T> &a){
int i;
int j;
if(r==0 || r!=a.r || c!=a.c){
changeSize(0,0);
return *this;
}
j = r*c;
for(i=(0);i<(j);i++){
dat[i] += a.dat[i];
}
return *this;
}
Matrix<T> operator+(const Matrix<T> &a){
return Matrix<T>(*this) += a;
}
Matrix<T>& operator-=(const Matrix<T> &a){
int i;
int j;
if(r==0 || r!=a.r || c!=a.c){
changeSize(0,0);
return *this;
}
j = r*c;
for(i=(0);i<(j);i++){
dat[i] -= a.dat[i];
}
return *this;
}
Matrix<T> operator-(const Matrix<T> &a){
return Matrix<T>(*this) -= a;
}
Matrix<T>& operator*=(const Matrix<T> &a){
int i;
int j;
int k;
int x;
T *m;
if(r==0 || c!=a.r){
changeSize(0,0);
return *this;
}
m = (T*)wmem;
x = r * a.c;
for(i=(0);i<(x);i++){
m[i] = 0;
}
for(i=(0);i<(r);i++){
for(k=(0);k<(c);k++){
for(j=(0);j<(a.c);j++){
m[i*a.c+j] += dat[i*c+k] * a.dat[k*a.c+j];
}
}
}
changeSize(r, a.c);
for(i=(0);i<(x);i++){
dat[i] = m[i];
}
return *this;
}
Matrix<T> operator*(const Matrix<T> &a){
return Matrix<T>(*this) *= a;
}
Matrix<T>& operator*=(const int a){
int i;
int j;
j = r * c;
for(i=(0);i<(j);i++){
dat[i] *= a;
}
return *this;
}
Matrix<T>& operator*=(const long long a){
int i;
int j;
j = r * c;
for(i=(0);i<(j);i++){
dat[i] *= a;
}
return *this;
}
Matrix<T>& operator*=(const double a){
int i;
int j;
j = r * c;
for(i=(0);i<(j);i++){
dat[i] *= a;
}
return *this;
}
inline T* operator[](const int a){
return dat+a*c;
}
}
;
template<class T> Matrix<T> operator*(const int a, const Matrix<T> &b){
return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const int a){
return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const long long a, const Matrix<T> &b){
return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const long long a){
return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const double a, const Matrix<T> &b){
return Matrix<T>(b)*=a;
}
template<class T> Matrix<T> operator*(const Matrix<T> &b, const double a){
return Matrix<T>(b)*=a;
}
template<class T, class S> inline Matrix<T> pow_L(Matrix<T> a, S b){
int i;
int j;
Matrix<T> res;
res.changeSize(a.r, a.c);
res = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
int N;
int M;
int P;
int Q;
int B[100000];
long long K;
int main(){
int i;
wmem = memarr;
Modint res = 0;
Modint p;
Matrix<Modint> m(2,2);
rd(N);
rd(M);
rd(K);
rd(P);
rd(Q);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(B[Lj4PdHRW]);
}
}
p = Modint(P) / Q;
m[0][0] = m[1][1] = 1 - p;
m[0][1] = m[1][0] = p;
(m = pow_L(m,K));
for(i=(0);i<(M);i++){
res += B[i] * m[0][0];
}
for(i=(M);i<(N);i++){
res += B[i] * m[1][0];
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20200217-1
// --- original code ---
// int N, M, P, Q, B[1d5];
// ll K;
// {
// Modint res = 0, p;
// Matrix<Modint> m(2,2);
// rd(N,M,K,P,Q,B(N));
//
// p = Modint(P) / Q;
// m[0][0] = m[1][1] = 1 - p;
// m[0][1] = m[1][0] = p;
// m **= K;
//
// rep(i,M) res += B[i] * m[0][0];
// rep(i,M,N) res += B[i] * m[1][0];
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0