結果
問題 | No.997 Jumping Kangaroo |
ユーザー | LayCurse |
提出日時 | 2020-02-21 21:41:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,742 bytes |
コンパイル時間 | 2,511 ms |
コンパイル使用メモリ | 216,688 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-08 21:27:06 |
合計ジャッジ時間 | 4,913 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 1 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | WA | - |
testcase_15 | AC | 1 ms
5,248 KB |
testcase_16 | WA | - |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | WA | - |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | RE | - |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (1000000007U) void *wmem; char memarr[96000000]; template<class S, class T> inline S min_L(S a,T b){ return a<=b?a:b; } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } inline void rd(long long &x){ int k; int m=0; x=0; for(;;){ k = getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } inline void wt_L(char a){ putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ putchar_unlocked('-'); } while(s--){ putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class T> struct Matrix{ int r; int c; int mem; T *dat; Matrix(){ r=c=mem = 0; } Matrix(const int rr, const int cc){ if(rr == 0 || cc == 0){ r = c = 0; } else{ r = rr; c = cc; } mem = r * c; if(mem > 0){ dat = new T[mem]; } } Matrix(const Matrix<T> &a){ int i; r = a.r; c = a.c; mem = r * c; dat = new T[mem]; for(i=(0);i<(mem);i++){ dat[i] = a.dat[i]; } } ~Matrix(){ if(mem){ delete [] dat; } } void changeSize(const int rr, const int cc){ if(rr==0 || cc==0){ r = c = 0; } else{ r = rr; c = cc; } if(mem < r*c){ if(mem){ delete [] dat; } mem = r*c; dat = new T[mem]; } } Matrix<T>& operator=(const Matrix<T> &a){ int i; int j; r = a.r; c = a.c; j = r * c; changeSize(r,c); for(i=(0);i<(j);i++){ dat[i] = a.dat[i]; } return *this; } Matrix<T>& operator=(const int a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] = 0; } j =min_L(r, c); for(i=(0);i<(j);i++){ dat[i*c+i] = a; } return *this; } Matrix<T>& operator+=(const Matrix<T> &a){ int i; int j; if(r==0 || r!=a.r || c!=a.c){ changeSize(0,0); return *this; } j = r*c; for(i=(0);i<(j);i++){ dat[i] += a.dat[i]; } return *this; } Matrix<T> operator+(const Matrix<T> &a){ return Matrix<T>(*this) += a; } Matrix<T>& operator-=(const Matrix<T> &a){ int i; int j; if(r==0 || r!=a.r || c!=a.c){ changeSize(0,0); return *this; } j = r*c; for(i=(0);i<(j);i++){ dat[i] -= a.dat[i]; } return *this; } Matrix<T> operator-(const Matrix<T> &a){ return Matrix<T>(*this) -= a; } Matrix<T>& operator*=(const Matrix<T> &a){ int i; int j; int k; int x; T *m; if(r==0 || c!=a.r){ changeSize(0,0); return *this; } m = (T*)wmem; x = r * a.c; for(i=(0);i<(x);i++){ m[i] = 0; } for(i=(0);i<(r);i++){ for(k=(0);k<(c);k++){ for(j=(0);j<(a.c);j++){ m[i*a.c+j] += dat[i*c+k] * a.dat[k*a.c+j]; } } } changeSize(r, a.c); for(i=(0);i<(x);i++){ dat[i] = m[i]; } return *this; } Matrix<T> operator*(const Matrix<T> &a){ return Matrix<T>(*this) *= a; } Matrix<T>& operator*=(const int a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] *= a; } return *this; } Matrix<T>& operator*=(const long long a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] *= a; } return *this; } Matrix<T>& operator*=(const double a){ int i; int j; j = r * c; for(i=(0);i<(j);i++){ dat[i] *= a; } return *this; } inline T* operator[](const int a){ return dat+a*c; } } ; template<class T> Matrix<T> operator*(const int a, const Matrix<T> &b){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const Matrix<T> &b, const int a){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const long long a, const Matrix<T> &b){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const Matrix<T> &b, const long long a){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const double a, const Matrix<T> &b){ return Matrix<T>(b)*=a; } template<class T> Matrix<T> operator*(const Matrix<T> &b, const double a){ return Matrix<T>(b)*=a; } template<class T, class S> inline Matrix<T> pow_L(Matrix<T> a, S b){ int i; int j; Matrix<T> res; res.changeSize(a.r, a.c); res = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } template<class T, class S> inline T pow_L(T a, S b){ T res = 1; res = 1; for(;;){ if(b&1){ res *= a; } b >>= 1; if(b==0){ break; } a *= a; } return res; } inline double pow_L(double a, double b){ return pow(a,b); } int N; int W; int A[100]; long long K; Modint dp[100]; int main(){ int i; wmem = memarr; Matrix<Modint> m; rd(N); rd(W); rd(K); { int Lj4PdHRW; for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){ rd(A[Lj4PdHRW]); } } m.changeSize(2, 2); dp[0] = 1; for(i=(0);i<(2*W);i++){ if(i!=W){ int j; for(j=(0);j<(N);j++){ dp[i+A[j]] += dp[i]; } } } m[0][0] = dp[W]; m[0][1] = dp[2*W]; m[1][0] = 1; m[1][1] = 0; (m = pow_L(m,K)); wt_L(m[0][0]); wt_L('\n'); return 0; } // cLay varsion 20200217-1 // --- original code --- // int N, W, A[100]; ll K; // Modint dp[100]; // // { // Matrix<Modint> m; // // rd(N,W,K,A(N)); // m.changeSize(2, 2); // // dp[0] = 1; // rep(i,2W) if(i!=W){ // rep(j,N) dp[i+A[j]] += dp[i]; // } // // m[0][0] = dp[W]; // m[0][1] = dp[2W]; // m[1][0] = 1; // m[1][1] = 0; // // m **= K; // wt(m[0][0]); // }