結果
問題 | No.997 Jumping Kangaroo |
ユーザー | otamay6 |
提出日時 | 2020-02-21 22:44:36 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 43,303 bytes |
コンパイル時間 | 3,952 ms |
コンパイル使用メモリ | 232,480 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-08 22:22:07 |
合計ジャッジ時間 | 4,900 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> #define REP(i,n) for(int i=0,i##_len=int(n);i<i##_len;++i) #define RREP(i,n) for(int i=int(n)-1;i>=0;--i) #define rep(i,a,b) for(int i=int(a);i<int(b);++i) #define rrep(i,a,b) for(int i=int(a)-1;i>=int(b);--i) #define All(x) (x).begin(),(x).end() #define rAll(x) (x).rbegin(),(x).rend() #define ITR(i,x) for(auto i=(x).begin();i!=(x).end();++i) using std::cin; using std::cout; using std::cerr; using std::endl; using std::vector; using std::string; typedef long long ll; typedef std::pair<ll, ll> P; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<ll> vl; typedef vector<vl> vvl; constexpr ll mod = 1e9+7; constexpr double eps = 1e-9; const double PI = acos(-1); void solve(); namespace Math{ template<typename T> bool chmax(T &a,T b){ if(a<b){ a=b; return true; } return false; } template<typename T> bool chmin(T &a,T b){ if(b<a){ a=b; return true; } return false; } ll bisearch(ll ok,ll ng,std::function<bool(ll)> check){ while(llabs(ok-ng)>1){ ll mid=ng-((ng-ok)>>1); if(check(mid)) ok=mid; else ng=mid; } return ok; } ll sqrt(ll n){ll s=1; while(s*s>n||n>=(s+1)*(s+1)){ s=(n/s+s)/2; } return s;} ll roundup(ll n,ll div){ if(n>0) return (n-1)/div+1; else return n/div; } bool square(ll a){ll n=Math::sqrt(a);return a==n*n;} template<typename T> T pow(T x, ll n){ T ans = T(1); while(n != 0){ if(n&1) ans = ans*x; x = x*x; n = n >> 1; } return ans; } int digitsum(ll N,int a){ if(N==0) return 0; int ret=0; ret+=digitsum(N/a,a)+N%a; return ret; } ll gcd(ll x,ll y){return y ? gcd(y,x%y) : x;}; ll lcm(ll x,ll y){return x/Math::gcd(x,y)*y;} ll manhattan(const P &a,const P &b){return llabs(a.first-b.first)+llabs(a.second-b.second);} } namespace Solution{ using Graph = vector<vector<int>>; ll knapsack(int kinds,int MAX_W,const vl &weight,const vl &cost){ vector<vector<ll>> dp(kinds+1,vector<ll>(MAX_W+1,0)); REP(i,kinds) REP(j,MAX_W+1){ if(j<weight[i]) dp[i+1][j]=dp[i][j]; else dp[i+1][j]=std::max(dp[i][j],dp[i][j-weight[i]]+cost[i]); } return dp[kinds][MAX_W]; } ll cost_based_knapsack(int kinds,int MAX_W,const vl &weight,const vl &cost){ int MAX_V=0; REP(i,kinds) Math::chmax(MAX_V,(int)cost[i]); vvl dp(kinds+1,vl(kinds*MAX_V+1,1LL<<58)); dp[0][0] = 0; REP(i,kinds) REP(j,kinds*MAX_V+1){ if(j<cost[i]) dp[i+1][j]=dp[i][j]; else dp[i+1][j] = std::min(dp[i][j],dp[i][j-cost[i]]+weight[i]); } int res=0; REP(i,kinds*MAX_V+1) if(dp[kinds][i]<=MAX_W) res=i; return res; } ll unlimited_knapsack(int kinds,int MAX_W,const vl &weight,const vl &cost){ vector<ll> dp(MAX_W+1); REP(i,kinds) for(int j=weight[i];j<=MAX_W;++j){ dp[j] = std::max(dp[j],dp[j-weight[i]]+cost[i]); } return dp[MAX_W]; } ll huge_knapsack(int kinds,ll MAX_W,const vl &weight,const vl &cost){ int n2=kinds/2; vector<P> ps(1<<(kinds/2)); REP(i,1<<n2){ ll sw=0,sv=0; REP(j,n2){ if(i>>j&1){ sw += weight[j]; sv += cost[j]; } } ps[i] = P(sw,sv); } std::sort(ps.begin(),ps.begin() + (1<<n2) ); int m=1; rep(i,1,1<<n2){ if(ps[m-1].second<ps[i].second) ps[m++] = ps[i]; } ll res=0; REP(i,1<<(kinds-n2)){ ll sw=0,sv=0; REP(j,kinds-n2){ if((i>>j)&1){ sw += weight[n2+j]; sv += cost[n2+j]; } } if(sw<=MAX_W){ ll tv = (lower_bound(ps.begin(),ps.begin()+m,P(MAX_W-sw,LLONG_MAX))-1)->second; Math::chmax(res,sv+tv); } } return res; } ll choose_MonN(int N,int M,const vl &cost){ vvl dp(N+1,vl(M+1,-1LL<<58)); REP(i,N+1) dp[i][0]=0; REP(i,N) REP(j,M){ if(j>i) break; dp[i+1][j+1]=std::max(dp[i][j+1],dp[i][j]+cost[i]); } return dp[N][M]; } ll Partition_Func(int n,int k){ vector<vector<ll>> dp(k+1,vector<ll> (n+1,0)); dp[0][0]=1; rep(i,1,k+1) REP(j,n+1){ if(j-i>=0) dp[i][j]=(dp[i][j-i]+dp[i-1][j]); else dp[i][j]=dp[i-1][j]; } return dp[k][n]; } int LCS(string s,string t){ int n=s.length(),m=s.length(); vector<vector<int>> dp(n+1,vector<int>(m+1)); REP(i,n) REP(j,m){ if (s[i] == t[j]) dp[i+1][j+1] = dp[i][j] + 1; else dp[i+1][j+1] = std::max(dp[i][j+1], dp[i+1][j]); } return dp[n][m]; } int LIS(const vector<ll> a){ int n=a.size(); ll INF=1LL<<50; vector<ll> dp(n+1,INF); REP(i,n) *std::lower_bound(All(dp),a[i])=a[i]; int k=std::lower_bound(All(dp),INF)-dp.begin(); return k; } int max_flow(int s,int t,const vector<vector<P>> &g){ struct edge_{int to,cap, rev;}; vector<bool> used(g.size(),false); vector<vector<edge_>> G(g.size()); REP(i,g.size()) REP(j,g[i].size()){ int from = i, to = g[i][j].second; int cap = g[i][j].first; G[from].push_back((edge_){to,cap,(int)G[to].size()}); G[to].push_back((edge_){from,0,(int)G[from].size()-1}); } auto dfs = [&](auto&& f,int v,int t,int fl)->int{ if(v==t) return fl; used[v] = true; REP(i,G[v].size()){ edge_ &e = G[v][i]; if(!used[e.to] && e.cap>0){ int d = f(f, e.to,t,std::min(fl,e.cap)); if(d>0){ e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; }; int flow=0; while(1){ used.assign(used.size(),false); int f = dfs(dfs,s,t,INT_MAX); if(f==0) return flow; flow += f; } } int bipartite_matching_calculate(const Graph &g){ int V = g.size(); vi match(V,-1); vector<bool> used(V,false); auto dfs = [&](auto&& f,int v)->bool{ used[v]=true; REP(i,g[v].size()){ int u = g[v][i], w = match[u]; if(w<0 || (!used[w] && f(f,w))){ match[v]=u; match[u]=v; return true; } } return false; }; int res=0; REP(v,V){ if(match[v] < 0){ used.assign(V,false); if(dfs(dfs,v)) res++; } } return res; } int bipartite_matching(int l,int r,std::function<bool(int,int)> F){ int V = l+r; Graph G(V); REP(i,l) REP(j,r) if(F(i,j)){ G[i].push_back(l+j); G[l+j].push_back(i); } return bipartite_matching_calculate(G); } ll dinic(int s,int t,const vector<vector<P>> &graph){ struct max_flow { struct edge_ { int to;ll cap;int rev; }; int V; vector<vector<edge_>> G; vector<int> itr, level; max_flow(int V) : V(V) { G.assign(V,vector<edge_>()); } void add_edge(int from, int to, ll cap) { G[from].push_back((edge_) {to, cap, (int) G[to].size()}); G[to].push_back((edge_) {from, 0, (int) G[from].size()-1}); } void bfs(int s) { level.assign(V,-1); std::queue<int> q; level[s] = 0; q.push(s); while (!q.empty()) { int v = q.front(); q.pop(); for(auto &e: G[v]) if(e.cap > 0 and level[e.to] < 0) { level[e.to] = level[v] + 1; q.push(e.to); } } } ll dfs(int v, int t, ll f) { if(v == t) return f; for(int& i=itr[v]; i < (int) G[v].size(); ++i) { edge_& e = G[v][i]; if (e.cap > 0 and level[v] < level[e.to]) { int d = dfs(e.to, t, std::min(f, e.cap)); if (d > 0) { e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; } int run(int s, int t) { int ret = 0, f; while(bfs(s), level[t] >= 0) { itr.assign(V,0); while ((f = dfs(s, t, 1LL<<59)) > 0) ret += f; } return ret; } }; max_flow d(graph.size()); REP(i,graph.size()) for(auto e:graph[i]){ d.add_edge(i,e.second,e.first); } return d.run(s,t); } } namespace NTT { using uint = uint_fast32_t; // NTT_PRIMES {{{ constexpr ll NTT_PRIMES[][2] = { {1224736769, 3}, // 2^24 * 73 + 1, {1053818881, 7}, // 2^20 * 3 * 5 * 67 + 1 {1051721729, 6}, // 2^20 * 17 * 59 + 1 {1045430273, 3}, // 2^20 * 997 + 1 {1012924417, 5}, // 2^21 * 3 * 7 * 23 + 1 {1007681537, 3}, // 2^20 * 31^2 + 1 {1004535809, 3}, // 2^21 * 479 + 1 {998244353, 3}, // 2^23 * 7 * 17 + 1 {985661441, 3}, // 2^22 * 5 * 47 + 1 {976224257, 3}, // 2^20 * 7^2 * 19 + 1 {975175681, 17}, // 2^21 * 3 * 5 * 31 + 1 {962592769, 7}, // 2^21 * 3^3 * 17 + 1 {950009857, 7}, // 2^21 * 4 * 151 + 1 {943718401, 7}, // 2^22 * 3^2 * 5^2 + 1 {935329793, 3}, // 2^22 * 223 + 1 {924844033, 5}, // 2^21 * 3^2 * 7^2 + 1 {469762049, 3}, // 2^26 * 7 + 1 {167772161, 3}, // 2^25 * 5 + 1 }; ll extgcd(ll a, ll b, ll &x, ll &y) { ll d; return b == 0 ? (x = a < 0 ? -1 : 1, y = 0, a < 0 ? -a : a) : (d = extgcd(b, a % b, y, x), y -= a / b * x, d); } ll modinv(ll a, ll mod) { ll x, y; extgcd(a, mod, x, y); x %= mod; return x < 0 ? x + mod : x; } ll modpow(ll a, ll b, ll mod) { ll r = 1; a %= mod; while(b) { if(b & 1) r = r * a % mod; a = a * a % mod; b >>= 1; } return r; } // NTT Core {{{ template < int MAX_H > struct Pool { static ll *tmp, *A, *B; }; template < int MAX_H > ll *Pool< MAX_H >::tmp = new ll[1 << MAX_H]; template < int MAX_H > ll *Pool< MAX_H >::A = new ll[1 << MAX_H]; template < int MAX_H > ll *Pool< MAX_H >::B = new ll[1 << MAX_H]; template < int MAX_H, ll mod, ll primitive > class Core { public: static_assert((mod & ((1 << MAX_H) - 1)) == 1, "mod is too small; comment out"); // ord zetaList[i] = 2^(i + 1) ll zetaList[MAX_H], zetaInvList[MAX_H]; // constexpr Core() { zetaList[MAX_H - 1] = modpow(primitive, (mod - 1) / (1 << MAX_H), mod); zetaInvList[MAX_H - 1] = modinv(zetaList[MAX_H - 1], mod); for(int ih = MAX_H - 2; ih >= 0; --ih) { zetaList[ih] = zetaList[ih + 1] * zetaList[ih + 1] % mod; zetaInvList[ih] = zetaInvList[ih + 1] * zetaInvList[ih + 1] % mod; } } void fft(ll *a, uint n, uint nh, bool inverse) const { ll *tmp = Pool< MAX_H >::tmp; uint mask = n - 1; for(uint i = n >> 1, ih = nh - 1; i >= 1; i >>= 1, --ih) { ll zeta = inverse ? zetaInvList[nh - 1 - ih] : zetaList[nh - 1 - ih]; ll powZeta = 1; for(uint j = 0; j < n; j += i) { for(uint k = 0; k < i; ++k) { tmp[j | k] = (a[((j << 1) & mask) | k] + powZeta * a[(((j << 1) | i) & mask) | k]) % mod; } powZeta = powZeta * zeta % mod; } std::swap(a, tmp); } if(nh & 1) { std::swap(a, tmp); for(uint i = 0; i < n; ++i) a[i] = tmp[i]; } if(inverse) { ll invN = modinv(n, mod); for(uint i = 0; i < n; ++i) a[i] = a[i] * invN % mod; } } vector< ll > conv(const vector< ll > &a, const vector< ll > &b) const { uint t = a.size() + b.size() - 1; uint n = 1, nh = 0; while(n < t) n <<= 1, ++nh; return convStrict(a, b, n, nh); } vector< ll > convStrict(const vector< ll > &a, const vector< ll > &b, uint n, uint nh) const { ll *A = Pool< MAX_H >::A, *B = Pool< MAX_H >::B; for(uint i = 0; i < n; ++i) A[i] = B[i] = 0; copy(a.begin(), a.end(), A); copy(b.begin(), b.end(), B); fft(A, n, nh, 0), fft(B, n, nh, 0); for(uint i = 0; i < n; ++i) A[i] = A[i] * B[i] % mod; fft(A, n, nh, 1); return vector< ll >(A, A + n); } }; // Convolution With Garner {{{ template < int MAX_H, int I > class ConvolutionWithGarnerCore { public: static void conv_for(uint n, uint nh, const vector< ll > &a, const vector< ll > &b, vector< ll > &mods, vector< ll > &coeffs, vector< vector< ll > > &constants) { static const Core< MAX_H, NTT_PRIMES[I][0], NTT_PRIMES[I][1] > ntt; auto c = ntt.convStrict(a, b, n, nh); mods[I] = NTT_PRIMES[I][0]; ConvolutionWithGarnerCore< MAX_H, I - 1 >::conv_for( n, nh, a, b, mods, coeffs, constants); // garner for(size_t i = 0; i < c.size(); ++i) { ll v = (c[i] - constants[I][i]) * modinv(coeffs[I], mods[I]) % mods[I]; if(v < 0) v += mods[I]; for(size_t j = I + 1; j < mods.size(); ++j) { constants[j][i] = (constants[j][i] + coeffs[j] * v) % mods[j]; } } for(size_t j = I + 1; j < mods.size(); ++j) { coeffs[j] = (coeffs[j] * mods[I]) % mods[j]; } } }; template < int MAX_H > class ConvolutionWithGarnerCore< MAX_H, -1 > { public: static void conv_for(uint, uint, const vector< ll > &, const vector< ll > &, vector< ll > &, vector< ll > &, vector< vector< ll > > &) {} }; template < int MAX_H > class ConvolutionWithGarner { public: template < int USE > static vector< ll > conv(const vector< ll > &a, const vector< ll > &b, ll mod) { static_assert(USE >= 1, "USE must be positive"); static_assert(USE <= sizeof(NTT_PRIMES) / sizeof(*NTT_PRIMES), "USE is too big"); uint nt = a.size() + b.size() - 1; uint n = 1, nh = 0; while(n < nt) n <<= 1, ++nh; vector< ll > coeffs(USE + 1, 1); vector< vector< ll > > constants(USE + 1, vector< ll >(n)); vector< ll > mods(USE + 1, mod); ConvolutionWithGarnerCore< MAX_H, USE - 1 >::conv_for( n, nh, a, b, mods, coeffs, constants); return constants.back(); } }; } // 1st param is MAX_H NTT::Core< 18, NTT::NTT_PRIMES[0][0], NTT::NTT_PRIMES[0][1] > nttBig; NTT::Core< 18, 998244353, 5 > ntt; using nttconv = NTT::ConvolutionWithGarner< 18 >; // nttconv::conv< USE >(a, b, mod) template <class iter> std::pair<std::complex<double>, double> min_ball(iter left, iter right, int seed = 1333) { const int n = right - left; using P=std::complex<double>; using ld=double; assert(n >= 1); if (n == 1) { return {*left, ld(0)}; } std::mt19937 mt(seed); std::shuffle(left, right, mt); // std::random_shuffle(left, right); // simple but deprecated iter ps = left; using circle = std::pair<P, ld>; auto cross=[](const P& a, const P& b) { return a.real()*b.imag() - a.imag()*b.real(); }; auto dot=[](const P& a, const P& b) { return a.real()*b.real() + a.imag()*b.imag(); }; auto make_circle_3 = [&](const P &a, const P &b, const P &c) -> circle { ld A = std::norm(b - c), B = std::norm(c - a), C = std::norm(a - b), S = cross(b - a, c - a); P p = (A * (B + C - A) * a + B * (C + A - B) * b + C * (A + B - C) * c) / (4 * S * S); ld r2 = std::norm(p - a); return {p, r2}; }; auto make_circle_2 = [](const P &a, const P &b) -> circle { P c = (a + b) / (ld)2; ld r2 = std::norm(a - c); return {c, r2}; }; auto in_circle = [](const P &a, const circle &c) -> bool { const double eps=1e-9; return std::norm(a - c.first) <= c.second + eps; }; circle c = make_circle_2(ps[0], ps[1]); // MiniDisc for (int i = 2; i < n; ++i) { if (!in_circle(ps[i], c)) { // MiniDiscWithPoint c = make_circle_2(ps[0], ps[i]); for (int j = 1; j < i; ++j) { if (!in_circle(ps[j], c)) { // MiniDiscWith2Points c = make_circle_2(ps[i], ps[j]); for (int k = 0; k < j; ++k) { if (!in_circle(ps[k], c)) { c = make_circle_3(ps[i], ps[j], ps[k]); } } } } } } return c; } template<typename V> size_t KMP(const V &Search,const V &Word){ size_t i=2,j=0; std::vector<int> Table(Search.size()); Table[0]=-1;Table[1]=0; while(i<Word.size()){ if(Word[i-1]==Word[j]){ Table[i]=j+1; ++i;++j; } else if(j>0) j=Table[j]; else{ Table[i]=0; ++i; } } i=0;j=0; while(j+i<Search.size()){ if(Word[i]==Search[j+i]){ ++i; if(i==Word.size()) return j; } else{ j+=i-Table[i]; if(i>0) i=Table[i]; } } return Search.size(); } template<class V> vector<int> Zalgo(V s){ vector<int> A(s.size(),0); A[0]=s.size(); int i = 1, j = 0; while (i < s.size()) { while (i+j < s.size() && s[j] == s[i+j]) ++j; A[i] = j; if (j == 0) { ++i; continue;} int k = 1; while (i+k < s.size() && k+A[k] < j) A[i+k] = A[k], ++k; i += k; j -= k; } return A; } template<typename V> struct rolling_hash { int n; const long long MOD[2] = {999999937LL, 1000000007LL}, base = 9973; vector<long long> hs[2], pw[2]; rolling_hash(){} rolling_hash(const V &s) { n = s.size(); for (int i = 0; i < 2; i++) { hs[i].assign(n+1,0); pw[i].assign(n+1,0); hs[i][0] = 0; pw[i][0] = 1; for (int j = 0; j < n; j++) { pw[i][j+1] = pw[i][j]*base%MOD[i]; hs[i][j+1] = (hs[i][j]*base+s[j])%MOD[i]; } } } long long hash(int l, int r, int i) { return ((hs[i][r]-hs[i][l]*pw[i][r-l])%MOD[i]+MOD[i])%MOD[i]; } bool match(int l1, int r1, int l2, int r2) { bool ret = 1; for (int i = 0; i < 2; i++) ret &= hash(l1,r1,i)==hash(l2,r2,i); return ret; } bool match(int l, int r, long long h[]) { bool ret = 1; for (int i = 0; i < 2; i++) ret &= hash(l,r,i)==h[i]; return ret; } }; template<typename V> struct RH{ using u64 = std::uint_fast64_t; const u64 MASK30 = (1<<30)-1,MASK31 = (1LL<<31) -1, MOD = (1LL<<61)-1; const u64 Posint = MOD*3; const u64 base = 9973; std::vector<u64> Hash,POW; RH(V s){ int n=s.size(); Hash.resize(n+1); POW.resize(n+1,1); for(size_t i=0;i<n;++i) { Hash[i+1] = CalcMod(Mul(Hash[i],base)+s[i]); POW[i+1] = CalcMod(Mul(POW[i],base)); } } u64 hash(size_t l,size_t r){return CalcMod( Hash[r] + Posint - Mul(Hash[l],POW[r-l]) );} bool match(size_t l1,size_t r1,size_t l2,size_t r2){return hash(l1,r1)==hash(l2,r2);} u64 Mul(u64 a,u64 b){ u64 au = a>>31; u64 ad = a&MASK31; u64 bu = b>>31; u64 bd = b&MASK31; u64 mid = ad*bu + au*bd; u64 midu = mid>>30; u64 midd = mid&MASK30; return au*bu*2 + midu + (midd<<31) + ad*bd; } u64 CalcMod(u64 val){ val = (val & MOD) + (val>>61); if(val>=MOD) val-=MOD; return val; } }; class mint { private: ll _num,_mod=mod; mint set(ll num){ _num = num ; if(_num<0){ if(_num>=-_mod)_num=_mod+_num; else _num=_mod-(-_num)%_mod; } else if(_num>=_mod) _num%=_mod; return *this; } ll imod()const{ ll n=_mod-2; ll ans = 1,x=_num; while(n != 0){ if(n&1) ans = ans*x%_mod; x = x*x%_mod; n = n >> 1; } return ans; } public: explicit mint(){ _num = 0; } explicit mint(ll num){ _num = num; if(_num<0){ if(_num>=-_mod)_num=_mod+_num; else _num=_mod-(-_num)%_mod; } else if(_num>=_mod) _num%=_mod; } explicit mint(ll num,ll M){ _mod=M; _num=num; if(_num<0){ if(_num>=-_mod)_num=_mod+_num; else _num=_mod-(-_num)%_mod; } else if(_num>=_mod) _num%=_mod; } mint(const mint &cp){_num=cp._num;_mod=cp._mod;} mint operator+ (const mint &x)const{ return mint(_num + x._num , _mod); } mint operator- (const mint &x)const{ return mint(_num - x._num , _mod);} mint operator* (const mint &x)const{ return mint(_num * x._num , _mod); } mint operator/ (const mint &x)const{ return mint(_num * x.imod() , _mod);} mint operator+=(const mint &x){ return set(_num + x._num); } mint operator-=(const mint &x){ return set(_num - x._num); } mint operator*=(const mint &x){ return set(_num * x._num); } mint operator/=(const mint &x){ return set(_num * x.imod());} mint operator= (const ll x){ return set(x); } mint operator+ (const ll x)const{return *this + mint(x,_mod); } mint operator- (const ll x)const{ return *this - mint(x,_mod); } mint operator* (const ll x)const{ return *this * mint(x,_mod); } mint operator/ (const ll x)const{ return *this/mint(x);} mint operator+=(const ll x){ *this = *this + x;return *this; } mint operator-=(const ll x){ *this = *this - x;return *this; } mint operator*=(const ll x){ *this = *this * x;return *this;} mint operator/=(const ll x){ *this = *this / x;return *this;} bool operator==(const mint &x)const{return _num==x._num;} bool operator!=(const mint &x)const{return _num!=x._num;} friend mint operator+(ll x,const mint &m){return mint(m._num + x , m._mod);} friend mint operator-(ll x,const mint &m){return mint( x - m._num , m._mod);} friend mint operator*(ll x,const mint &m){return mint(m._num * (x % m._mod) , m._mod);} friend mint operator/(ll x,const mint &m){return mint(m.imod() * (x % m._mod) , m._mod);} explicit operator ll() { return _num; } explicit operator int() { return (int)_num; } friend std::ostream& operator<<(std::ostream &os, const mint &x){ os << x._num; return os; } friend std::istream& operator>>(std::istream &is, mint &x){ll val; is>>val; x.set(val); return is;} }; ll inv_mod(ll a,ll _mod){return (ll)Math::pow(mint(a,_mod),_mod-2);} class Factorial{ private: vector<ll> fac; vector<ll> ifac; public: Factorial(ll N){ fac.reserve(N+1); fac.push_back(1); REP(i,N) fac.push_back(fac[i]*(i+1)%mod); ifac.resize(N+1); ifac[N]=inv_mod(fac[N],mod); REP(i,N) ifac[N-1-i]=(ifac[N-i]*(N-i))%mod; } ll fact(ll a){return fac[a];} ll ifact(ll a){return ifac[a];} ll cmb(ll a,ll b){ if(a==0&&b==0) return 1; if(a<b||a<0||b<0) return 0; ll tmp =ifact(a-b)*ifact(b)%mod; return tmp*fac[a]%mod; } ll per(ll a,ll b){ if(a==0&&b==0) return 1; if(a<b||a<0||b<0) return 0; return fac[a]*ifac[a-b]%mod; } }; struct rational { ll p, q; void normalize() { // keep q positive if (q < 0) p *= -1, q *= -1; ll d = Math::gcd(p < 0 ? -p : p, q); if (d == 0) p = 0, q = 1; else p /= d, q /= d; } rational(ll p, ll q = 1) : p(p), q(q) { normalize(); } rational &operator+=(const rational &a){p = a.q * p + a.p * q; q = a.q * q; normalize();return *this;} rational &operator-=(const rational &a){p = a.q * p - a.p * q; q = a.q * q; normalize();return *this;} rational &operator*=(const rational &a){p *= a.p; q *= a.q;normalize();return *this;} rational &operator/=(const rational &a){p *= a.q; q *= a.p; normalize();return *this;} rational &operator-(){p *= -1;return *this;} friend rational operator+(const rational &a, const rational &b){return rational(a) += b;} friend rational operator*(const rational &a, const rational &b){return rational(a) *= b;} friend rational operator-(const rational &a, const rational &b){return rational(a)-=b;} friend rational operator/(const rational &a, const rational &b){return rational(a) /= b;} friend bool operator<(const rational &a, const rational &b){ // avoid overflow return (long double) a.p * b.q < (long double) a.q * b.p; } friend bool operator<=(const rational &a, const rational &b){return !(b < a);} friend bool operator>(const rational &a, const rational &b){return b < a;} friend bool operator>=(const rational &a, const rational &b){return !(a < b);} friend bool operator==(const rational &a, const rational &b){return !(a < b) && !(b < a);} friend bool operator!=(const rational &a, const rational &b){return (a < b) || (b < a);} friend std::ostream& operator<<(std::ostream &os, const rational &x){ printf("%.16f",(double)x.p/(double)x.q); return os; } friend std::istream& operator>>(std::istream &is, rational &x){is>>x.p>>x.q; x.normalize(); return is;} }; template<typename T> class MAT{ private: int row,col; vector<vector<T>> _A; double eps = 1e-9; MAT set(vector<vector<T>> A){_A = A ; return *this;} public: MAT(){ } MAT(int n,int m=0,T x=T(0)){ if(n<1 || m<0){cout << "err Matrix::Matrix" <<endl;exit(1);} row = n; col = m?m:n;//return E if m=0 REP(i,row){ vector<T> a(col,x); _A.push_back(a); } if(m==0) REP(i,n) _A[i][i]=1.0; } MAT(vector<vector<T>> A){row=A.size();col=A[0].size();_A=A;} MAT(const MAT &cp){_A=cp._A;row=cp.row;col=cp.col;} T* operator[] (int i){return _A[i].data();} MAT operator= (vector<vector<T>> x) {return set(x);} MAT operator+ (MAT x) const { if(row!=x.row || col!=x.col){ cerr << "err Matrix::operator+" <<endl; cerr << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j]; return r; } MAT operator- (MAT x) const { if(row!=x.row || col!=x.col){ cerr << "err Matrix::operator-" <<endl; cerr << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j]; return r; } MAT operator* (MAT x) const { if(x.col==1&&x.row==1) return x[0][0]*MAT(_A); if(row==1&&col==1) return _A[0][0]*x; if(col!=x.row){ cerr << "err Matrix::operator*" <<endl; cerr << " not equal matrix size" <<endl; exit(0); } MAT r(row, x.col); REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j]; return r; } MAT operator/(MAT x)const{*this = *this * x.inverse(); return *this;} MAT operator/ (T a)const{ MAT r(row,col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a; return r; } MAT operator+= (MAT x) {*this = *this + x;return *this;} MAT operator-= (MAT x) {*this = *this - x; return *this;} MAT operator*=(T a){*this = a*(*this); return this;} MAT operator/=(MAT x){*this = *this/x;return *this;} MAT operator/=(T a){*this = *this/a; return *this;} friend MAT operator* (T n,MAT x){ MAT r(x.row,x.col); REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j]; return r; } friend MAT operator* (MAT x,T n){ MAT r(x.row,x.col); REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j]; return r; } explicit operator vector<vector<T>>(){return _A;} friend std::ostream &operator<<(std::ostream &os,const MAT &x){ REP(i,x.row) REP(j,x.col) os<<x._A[i][j]<<" \n"[j==x.col-1]; return os;} friend std::istream &operator>>(std::istream &is,MAT &x){REP(i,x.row) REP(j,x.col) is>>x._A[i][j];return is;} size_t size_row()const{return row;} size_t size_col()const{return col;} MAT transpose()const{ MAT r(col,row); REP(i,col) REP(j,row) r[i][j]=_A[j][i]; return r; } MAT inverse()const{ T buf; MAT<T> inv_a(row,0); vector<vector<T>> a=_A; //row reduction REP(i,row){ buf=1/a[i][i]; REP(j,row){ a[i][j]*=buf; inv_a[i][j]*=buf; } REP(j,row){ if(i!=j){ buf=a[j][i]; REP(k,row){ a[j][k]-=a[i][k]*buf; inv_a[j][k]-=inv_a[i][k]*buf; } } } } return inv_a; } MAT Jacobi(MAT b)const{//ヤコビ法によって解を求める size_t sz=row; MAT D(sz,sz),inD(sz,sz),H(sz,sz),N(sz,sz); MAT c(sz,1),x(sz,1),tmp(sz,1); //cout<<"initialized"<<endl; REP(i,sz){//値の初期化、Aを対角要素とそれ以外に分解する(できてる) REP(j,sz){ H[i][j] = 0; if(i==j){ D[i][j] = _A[i][j]; inD[i][j] = 1/_A[i][j]; N[i][j]=0; } else if(i!=j){ D[i][j] = 0; inD[i][j] = 0; N[i][j]=_A[i][j]; } } c[i][0] = 0; x[i][0] = 1; } c=inD*b; H=inD*N; while(1){//反復法ステップ1→2→1... tmp=x; x=c-H*x; T r=T(0); for(int i=0;i<row;++i){ r+=(x[i][0]-tmp[i][0])*(x[i][0]-tmp[i][0]); } if(r<eps) break; } return x; } MAT Gauss(MAT b)const{//ガウス・ザイデル法によって解を求める MAT<T> DL(row),U(row),inDL(row),H(row),c(row,1),x(row,1),tmp(row,1); for(int i=0;i<row;i++){ for(int j=0;j<col;j++){ H[i][j] = 0; if(i>=j){ DL[i][j] = _A[i][j]; U[i][j] = 0; } else{ DL[i][j] = 0; U[i][j] = _A[i][j]; } } x[i][0] = 1; } inDL=DL.inverse(); c=inDL*b; H=inDL*U; int n=0; while(1){ tmp=x; x=c-H*x; T r = T(0); for(int i=0;i<row;++i){ r+=(x[i][0]-tmp[i][0])*(x[i][0]-tmp[i][0]); } n++; if(r<eps) break; } return x; } int rank()const{// O( n^3 ) vector<vector<T>> A=_A; const int n = row, m = col; int r = 0; for(int i = 0; r < n && i < m; ++i) { int pivot = r; for(int j = r+1; j < n; ++j) if(fabs(A[j][i]) > fabs(A[pivot][i])) pivot = j; swap(A[pivot], A[r]); if(fabs(A[r][i]) < eps) continue; for (int k = m-1; k >= i; --k) A[r][k] /= A[r][i]; rep(j,r+1,n) rep(k,i,m) A[j][k] -= A[r][k] * A[j][i]; ++r; } return r; } }; class UnionFind{ private: vector<int> Parent,es; vector<ll> diff_weight; public: UnionFind(int N){ es.resize(N,0); Parent.resize(N,-1); diff_weight.resize(N,0LL); } int root(int A){ if(Parent[A]<0) return A; else{ int r = root(Parent[A]); diff_weight[A] += diff_weight[Parent[A]]; // 累積和をとる return Parent[A]=r; } } bool issame(int A,int B){ return root(A)==root(B); } ll weight(int x) { root(x); // 経路圧縮 return diff_weight[x]; } ll diff(int x, int y) { return weight(y) - weight(x); } int size(int A){ return -Parent[root(A)]; } int eize(int A){ return es[root(A)]; } bool connect(int A,int B){ A=root(A); B=root(B); if(A==B) return false; if(size(A)<size(B)) std::swap(A,B); Parent[A]+=Parent[B]; es[A]+=es[B]+1; Parent[B]=A; return true; } void unite(int A,int B){ A=root(A); B=root(B); if(A==B){ es[A]++; return; } if(size(A)<size(B)) std::swap(A,B); Parent[A]+=Parent[B]; es[A]+=es[B]+1; Parent[B]=A; return; } bool merge(int A, int B, ll w) { // x と y それぞれについて、 root との重み差分を補正 w += weight(A); w -= weight(B); A=root(A); B=root(B); if(A==B) return false; if(size(A)<size(B)) std::swap(A,B),w=-w; Parent[A]+=Parent[B]; Parent[B]=A; // x が y の親になるので、x と y の差分を diff_weight[y] に記録 diff_weight[B] = w; return true; } }; struct edge{ int from;int to;ll cost; void push(int a,int b,int c){ from=a;to=b;cost=c; } bool operator<(const edge& y)const{ if(cost!=y.cost) return cost<y.cost; else if(to!=y.to) return to<y.to; else return from<y.from;} bool operator>(const edge& y)const{ if(cost!=y.cost) return cost>y.cost; else if(to!=y.to) return to>y.to; else return from>y.from;} bool operator==(const edge& y) const{return !(*this<y)&&!(*this>y);} }; class lca { public: using Graph = vector<vector<int>>; const int n = 0; const int log2_n = 0; std::vector<std::vector<int>> parent; std::vector<int> depth; lca() {} lca(const Graph &g, int root) : n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) { dfs(g, root, -1, 0); for (int k = 0; k + 1 < log2_n; k++) { for (int v = 0; v < (int)g.size(); v++) { if (parent[k][v] < 0) parent[k + 1][v] = -1; else parent[k + 1][v] = parent[k][parent[k][v]]; } } } void dfs(const Graph &g, int v, int p, int d) { parent[0][v] = p; depth[v] = d; REP(j,g[v].size()) { if (g[v][j] != p) dfs(g, g[v][j], v, d + 1); } } int get(int u, int v) { if (depth[u] > depth[v]) std::swap(u, v); for (int k = 0; k < log2_n; k++) { if ((depth[v] - depth[u]) >> k & 1) { v = parent[k][v]; } } if (u == v) return u; for (int k = log2_n - 1; k >= 0; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } }; class SOSU{ private: vector<int> Prime_Number; vector<bool> isp; public: SOSU(int N){ isp.resize(N+1,true); isp[0]=isp[1]=false; rep(i,2,N+1) if(isp[i]){ Prime_Number.push_back(i); for(int j=2*i;j<=N;j+=i) isp[j]=false; } } int operator[](int i){return Prime_Number[i];} int size(){return Prime_Number.size();} int back(){return Prime_Number.back();} bool isPrime(int q){return isp[q];} }; class Divisor{//素因数分解をしてから約数列挙、分解結果はP(底,指数)でpfacにまとめている private: vector<ll> F; vector<P> pfactorize; public: Divisor(ll N){ for(ll i = 1; i * i <= N; i++) { if(N % i == 0) { F.push_back(i); if(i * i != N) F.push_back(N / i); } } sort(begin(F), end(F)); SOSU p(Math::sqrt(N)+1); REP(i,p.size()){ pfactorize.push_back(P(p[i],0)); while(N%p[i]==0){ N/=p[i]; pfactorize.back().second++; } if(pfactorize.back().second==0) pfactorize.pop_back(); } if(N>1) pfactorize.push_back(P(N,1)); } int size(){return F.size();} vector<P> pfac(){return pfactorize;} ll operator[](int k){return F[k];} }; template<typename T> struct compress{ std::map<T,int> zip; vector<T> unzip; compress(vector<T> x){ unzip=x; sort(All(x)); x.erase(unique(All(x)),x.end()); REP(i,x.size()){ zip[x[i]]=i; } } size_t operator[](int k){return zip[unzip[k]];} }; template<typename T> class SegmentTree{ private: typedef std::function<T(T,T)> F; int n; T d0; vector<T> vertex; F f; F g; public: SegmentTree(F f,F g,T d):d0(d),f(f),g(g){} void init(int _n){ n=1; while(n<_n) n*=2; vertex.resize(2*n-1,d0); } void build(const vector<T> &v){ int n_=v.size(); init(n_); for(int i=0;i<n_;i++) vertex[n+i-1]=v[i]; for(int i=n-2;i>=0;i--) vertex[i]=f(vertex[2*i+1],vertex[2*i+2]); } void update(int i,T x){ int k=i+n-1; vertex[k]=g(vertex[k],x); while(k>0){ k=(k-1)/2; vertex[k]=f(vertex[2*k+1],vertex[2*k+2]); } return; } T query(int l,int r){ T vl=d0,vr=d0; l+=n-1; r+=n-1; for(;l<=r;l/=2,r=r/2-1){ if(l%2==0) vl=f(vl,vertex[l]); if(r&1) vr=f(vr,vertex[r]); } return f(vl,vr); } }; template <typename T,typename E> struct LazySegmentTree{ using F = std::function<T(T,T)>; using G = std::function<T(T,E)>; using H = std::function<E(E,E)>; int n,height; F f; G g; H h; T ti; E ei; vector<T> dat; vector<E> laz; LazySegmentTree(F f,G g,H h,T ti,E ei): f(f),g(g),h(h),ti(ti),ei(ei){} void init(int n_){ n=1;height=0; while(n<n_) n<<=1,height++; dat.assign(2*n,ti); laz.assign(2*n,ei); } void build(const vector<T> &v){ int n_=v.size(); init(n_); for(int i=0;i<n_;i++) dat[n+i]=v[i]; for(int i=n-1;i;i--) dat[i]=f(dat[(i<<1)|0],dat[(i<<1)|1]); } inline T reflect(int k){ return laz[k]==ei?dat[k]:g(dat[k],laz[k]); } inline void propagate(int k){ if(laz[k]==ei) return; laz[(k<<1)|0]=h(laz[(k<<1)|0],laz[k]); laz[(k<<1)|1]=h(laz[(k<<1)|1],laz[k]); dat[k]=reflect(k); laz[k]=ei; } inline void thrust(int k){ for(int i=height;i;i--) propagate(k>>i); } inline void recalc(int k){ while(k>>=1) dat[k]=f(reflect((k<<1)|0),reflect((k<<1)|1)); } void update(int a,int b,E x){ thrust(a+=n); thrust(b+=n-1); for(int l=a,r=b+1;l<r;l>>=1,r>>=1){ if(l&1) laz[l]=h(laz[l],x),l++; if(r&1) --r,laz[r]=h(laz[r],x); } recalc(a); recalc(b); } void set_val(int a,T x){ thrust(a+=n); dat[a]=x;laz[a]=ei; recalc(a); } T query(int a,int b){ thrust(a+=n); thrust(b+=n-1); T vl=ti,vr=ti; for(int l=a,r=b+1;l<r;l>>=1,r>>=1) { if(l&1) vl=f(vl,reflect(l++)); if(r&1) vr=f(reflect(--r),vr); } return f(vl,vr); } template<typename C> int find(int st,C &check,T &acc,int k,int l,int r){ if(l+1==r){ acc=f(acc,reflect(k)); return check(acc)?k-n:-1; } propagate(k); int m=(l+r)>>1; if(m<=st) return find(st,check,acc,(k<<1)|1,m,r); if(st<=l&&!check(f(acc,dat[k]))){ acc=f(acc,dat[k]); return -1; } int vl=find(st,check,acc,(k<<1)|0,l,m); if(~vl) return vl; return find(st,check,acc,(k<<1)|1,m,r); } template<typename C> int find(int st,C &check){ T acc=ti; return find(st,check,acc,1,0,n); } }; template<typename T> class FFT{ private: using Complex = std::complex<double>; std::vector<Complex> C; void DFT(std::vector<Complex> &F,size_t n,int sig=1){ if(n==1) return; std::vector<Complex> f0(n/2),f1(n/2); for(size_t i=0;i<n/2;++i){ f0[i]=F[2*i]; f1[i]=F[2*i+1]; } DFT(f0,n/2,sig); DFT(f1,n/2,sig); Complex z(cos(2.0*PI/n),sin(2.0*PI/n)*sig),zi=1; for(size_t i=0;i<n;++i){ if(i<n/2) F[i]=f0[i]+zi*f1[i]; else F[i]=f0[i-n/2]+zi*f1[i-n/2]; zi*=z; } return; } void invDFT(std::vector<Complex> &f,size_t n){ DFT(f,n,-1); for(size_t i=0;i<n;++i){ f[i]/=n; } return; } public: FFT(const std::vector<T> &A,const std::vector<T> &B){ size_t n=1; while(n<=A.size()+B.size()){ n*=2; } std::vector<Complex> g(n,Complex(0)); C.resize(n,Complex(0)); size_t i_len=std::max(A.size(),B.size()); for(size_t i=0;i<i_len;++i){ if(i<A.size()) C[i]=Complex(A[i]); if(i<B.size()) g[i]=Complex(B[i]); } DFT(C,n); DFT(g,n); for(size_t i=0;i<n;++i) C[i]=C[i]*g[i]; invDFT(C,n); for(size_t i=0;i<n;++i) if(T(C[i].real())!=C[i].real()){ C[i]=Complex(C[i].real()+0.5); } } T operator[](int k)const{return T(C[k].real());} }; int main(){ cin.tie(nullptr); std::ios::sync_with_stdio(false); solve(); return 0; } void solve(){ ll N,W,K;cin>>N>>W>>K; vector<int> A(N); REP(i,N) cin>>A[i]; vector<mint> dp(2*W+1,mint(0)); dp[0]=1; REP(i,2*W+1) REP(j,N){ if(i>=A[j]) dp[i]+=dp[i-A[j]]; } mint g=dp[W],f=dp[2*W]-g*dp[W]; MAT<mint> H(3,3,mint(0)),ans(3,1); H[0][0]=g;H[0][1]=f; H[1][0]=1; H[2][1]=1; ans[0][0]=dp[2*W]; ans[1][0]=dp[W]; ans[2][0]=1; ans=Math::pow(H,K)*ans; cout<<ans[2][0]<<endl; }