結果

問題 No.997 Jumping Kangaroo
ユーザー ningenMeningenMe
提出日時 2020-02-21 23:34:57
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 7,003 bytes
コンパイル時間 1,890 ms
コンパイル使用メモリ 180,068 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-09 02:41:43
合計ジャッジ時間 2,859 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
 
#define ALL(obj) (obj).begin(),(obj).end()
#define SPEED cin.tie(0);ios::sync_with_stdio(false);
 
template<class T> using PQ = priority_queue<T>;
template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>;
 
constexpr long long MOD = (long long)1e9 + 7;
constexpr long long MOD2 = 998244353;
constexpr long long HIGHINF = (long long)1e18;
constexpr long long LOWINF = (long long)1e15;
constexpr long double PI = 3.1415926535897932384626433;
 
template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);}
template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));}
template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}}
template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;}
template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;}
template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;}
void print(void) {cout << endl;}
template <class Head> void print(Head&& head) {cout << head;print();}
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);}
template <class T> void chmax(T& a, const T b){a=max(a,b);}
template <class T> void chmin(T& a, const T b){a=min(a,b);}
void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;}
void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;}
void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;}

#include <bits/stdc++.h>
using namespace std;

//Matrix_Repeated_Multiplication_Mod O((N^3)(logK))
template<class T> vector<vector<T>> Matrix_Repeated_Multiplication_Mod(vector<vector<T>> mat, long long K) {
    int N = mat.size();
    vector<vector<T>> res(N, vector<T>(N)), tmp(N, vector<T>(N));

    for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) res[i][j] = (i == j);
    for (; K > 0; K /= 2) {
        if (K & 1) {
            for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) tmp[i][j] = 0;
            for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) for (int k = 0; k < N; ++k) tmp[i][j] += (mat[i][k] * res[k][j]);
            res = tmp;
        }
        for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) tmp[i][j] = 0;
        for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) for (int k = 0; k < N; ++k) tmp[i][j] += (mat[i][k] * mat[k][j]) ;
        mat = tmp;
    }
    return res;
}

//verify  https://atcoder.jp/contests/dp/tasks/dp_r

template<long long mod> class ModInt {
public:
	long long x;
	ModInt():x(0) {
		// do nothing
	}
	ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) {
		// do nothing
	}
	ModInt &operator+=(const ModInt &p) {
		if((x += p.x) >= mod) x -= mod;
		return *this;
	}
	ModInt &operator+=(const long long y) {
        ModInt p(y);
		if((x += p.x) >= mod) x -= mod;
		return *this;
	}
	ModInt &operator+=(const int y) {
        ModInt p(y);
		if((x += p.x) >= mod) x -= mod;
		return *this;
	}
	ModInt &operator-=(const ModInt &p) {
		if((x += mod - p.x) >= mod) x -= mod;
		return *this;
	}
	ModInt &operator-=(const long long y) {
        ModInt p(y);
		if((x += mod - p.x) >= mod) x -= mod;
		return *this;
	}
	ModInt &operator-=(const int y) {
        ModInt p(y);
		if((x += mod - p.x) >= mod) x -= mod;
		return *this;
	}
	ModInt &operator*=(const ModInt &p) {
		x = (x * p.x % mod);
		return *this;
	}
	ModInt &operator*=(const long long y) {
        ModInt p(y);
		x = (x * p.x % mod);
		return *this;
	}
	ModInt &operator*=(const int y) {
        ModInt p(y);
		x = (x * p.x % mod);
		return *this;
	}
	ModInt &operator/=(const ModInt &p) {
		*this *= p.inv();
		return *this;
	}
	ModInt &operator/=(const long long y) {
        ModInt p(y);
		*this *= p.inv();
		return *this;
	}
	ModInt &operator/=(const int y) {
        ModInt p(y);
		*this *= p.inv();
		return *this;
	}
	ModInt operator=(const int y) {
        ModInt p(y);
        *this = p;
        return *this;
    }
    ModInt operator=(const long long y) {
        ModInt p(y);
		*this = p;
        return *this;
    }
	ModInt operator-() const { return ModInt(-x); }
	ModInt operator++() { 
        x++;
        if(x>=mod) x-=mod;
        return *this; 
    }
	ModInt operator--() { 
        x--;
        if(x<0) x+=mod;
        return *this; 
    }
	ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
	ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
	ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
	ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
	bool operator==(const ModInt &p) const { return x == p.x; }
	bool operator!=(const ModInt &p) const { return x != p.x; }
	ModInt inv() const {
		int a = x, b = mod, u = 1, v = 0, t;
		while(b > 0) {
			t = a / b;
			swap(a -= t * b, b);
			swap(u -= t * v, v);
		}
		return ModInt(u);
	}
	ModInt pow(long long n) const {
		ModInt ret(1), mul(x);
		while(n > 0) {
			if(n & 1) ret *= mul;
			mul *= mul;
			n >>= 1;
		}
		return ret;
	}
	friend ostream &operator<<(ostream &os, const ModInt &p) {
		return os << p.x;
	}
	friend istream &operator>>(istream &is, ModInt &a) {
		long long t;
		is >> t;
		a = ModInt<mod>(t);
		return (is);
	}
};
using modint = ModInt<MOD>;

int main() {
    ll N,W,K; cin >> N >> W >> K;
    vector<int> A(2*W+1,0);
    for(int i = 0; i < N; ++i) {
        int t; cin >> t; A[t] = 1;
    }
    vector<modint> cnt1(W+1),cnt2(W+1);
    for(int i = 0; i <= W; ++i) {
        vector<modint> dp(W+1,0);
        dp[i] = 1;
        for(int j = 0; j <= W; ++j) {
            for(int k = 0; k <= 2*W; ++k) {
                if(A[k]&&j+k<=W) dp[j+k]+=dp[j];
            }
        }
        cnt1[i] = dp[W];
        if(!i) cnt2 = dp;
    }
    modint B = cnt1[0], C = 0;
    for(int i = 0; i < W; ++i) {
        for(int j = 1; j <= W; ++j){
            if(A[W-i+j]) C += cnt2[i]*cnt1[j];
        }
    }
    corner(K==1,B);
    vector<vector<modint>> mat(2,vector<modint>(2,0));
    mat[0][0] = B;
    mat[0][1] = C;
    mat[1][0] = 1;
    mat[1][1] = 0;
    mat = Matrix_Repeated_Multiplication_Mod<modint>(mat,K-1);
    cout << mat[0][0]*B + mat[0][1] << endl;
    return 0;
}
0