結果
| 問題 | 
                            No.995 タピオカオイシクナーレ
                             | 
                    
| コンテスト | |
| ユーザー | 
                             tanimani364
                         | 
                    
| 提出日時 | 2020-02-22 00:45:50 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 3,173 bytes | 
| コンパイル時間 | 1,345 ms | 
| コンパイル使用メモリ | 136,544 KB | 
| 最終ジャッジ日時 | 2025-01-09 01:44:55 | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 WA * 2 | 
| other | WA * 23 | 
ソースコード
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<map>
#include<set>
#include<cstdio>
#include<cmath>
#include<deque>
#include<numeric>
#include<queue>
#include<stack>
#include<cstring>
#include<limits>
#include<functional>
#include<unordered_set>
#include<iomanip>
#include<cassert>
#include<regex>
#include<bitset>
#include<complex>
#include<chrono>
#define rep(i,a) for(int i=(int)0;i<(int)a;++i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(),x.end()
using ll=long long;
constexpr ll mod = 1e9 + 7;
constexpr ll INF = 1LL << 60;
ll gcd(ll n, ll m) {
	ll tmp;
	while (m!=0) {
		tmp = n % m;
		n = m;
		m = tmp;
	}
	return n;
}
ll lcm(ll n, ll m) {
	return abs(n * m) / gcd(n, m);//gl=xy
}
 
template<class T> inline bool chmin(T& a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template<class T> inline bool chmax(T& a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}
 
using namespace std;
//ここから
#define int_64_t ll
template< int mod >
struct ModInt {
  int x;
  ModInt() : x(0) {}
  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }
  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ModInt operator-() const { return ModInt(-x); }
  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
  bool operator==(const ModInt &p) const { return x == p.x; }
  bool operator!=(const ModInt &p) const { return x != p.x; }
  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }
  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }
  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }
  static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
void solve(){
  ll n,m,k,p,q;
  cin>>n>>m>>k>>p>>q;
  vector<modint>b(n);
  rep(i,n)cin>>b[i];
  modint x=modint(1)-((modint(2)*p)/q);
  x.pow(k);
  modint even=modint(1)+x;
  even/=modint(2);
  modint odd=modint(1)-x;
  odd/=modint(2);
  modint ans=0;
  rep(i,m)ans+=even*b[i];
  for(int i=m;i<n;++i)ans+=odd*b[i];
  cout<<ans<<endl;
}
int main(){
	ios::sync_with_stdio(false);
  cin.tie(0);
	cout<<fixed<<setprecision(15);
  solve();
	return 0;
}
            
            
            
        
            
tanimani364