結果

問題 No.470 Inverse S+T Problem
ユーザー sansaquasansaqua
提出日時 2020-02-22 11:11:54
言語 Common Lisp
(sbcl 2.5.0)
結果
AC  
実行時間 22 ms / 2,000 ms
コード長 13,475 bytes
コンパイル時間 182 ms
コンパイル使用メモリ 60,932 KB
実行使用メモリ 37,632 KB
最終ジャッジ日時 2024-12-22 13:55:54
合計ジャッジ時間 1,950 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
外部呼び出し有り
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 18 ms
29,736 KB
testcase_01 AC 22 ms
31,564 KB
testcase_02 AC 20 ms
30,372 KB
testcase_03 AC 18 ms
29,740 KB
testcase_04 AC 18 ms
29,608 KB
testcase_05 AC 20 ms
29,608 KB
testcase_06 AC 21 ms
35,492 KB
testcase_07 AC 20 ms
37,632 KB
testcase_08 AC 20 ms
33,460 KB
testcase_09 AC 19 ms
29,608 KB
testcase_10 AC 19 ms
29,736 KB
testcase_11 AC 21 ms
35,732 KB
testcase_12 AC 21 ms
29,480 KB
testcase_13 AC 21 ms
31,696 KB
testcase_14 AC 21 ms
29,480 KB
testcase_15 AC 20 ms
30,396 KB
testcase_16 AC 20 ms
33,572 KB
testcase_17 AC 20 ms
33,700 KB
testcase_18 AC 19 ms
30,396 KB
testcase_19 AC 20 ms
29,352 KB
testcase_20 AC 19 ms
29,484 KB
testcase_21 AC 20 ms
31,692 KB
testcase_22 AC 20 ms
29,608 KB
testcase_23 AC 19 ms
33,828 KB
testcase_24 AC 20 ms
29,480 KB
testcase_25 AC 19 ms
29,608 KB
testcase_26 AC 18 ms
30,244 KB
testcase_27 AC 20 ms
32,408 KB
testcase_28 AC 21 ms
35,780 KB
testcase_29 AC 21 ms
33,340 KB
testcase_30 AC 22 ms
31,436 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 22 DEC 2024 01:55:51 PM):

; file: /home/judge/data/code/Main.lisp
; in: DEFUN MAKE-SCC
;     (AREF GRAPH V)
; 
; note: unable to
;   optimize
; because:
;   Upgraded element type of array is not known at compile time.

; in: DEFUN MAKE-CONDENSED-GRAPH
;     (AREF GRAPH I)
; 
; note: unable to
;   optimize
; because:
;   Upgraded element type of array is not known at compile time.
; 
; compilation unit finished
;   printed 2 notes


; wrote /home/judge/data/code/Main.fasl
; compilation finished in 0:00:00.103

ソースコード

diff #

#-swank
(unless (member :child-sbcl *features*)
  (quit
   :unix-status
   (process-exit-code
    (run-program *runtime-pathname*
                 `("--control-stack-size" "128MB"
                   "--noinform" "--disable-ldb" "--lose-on-corruption" "--end-runtime-options"
                   "--eval" "(push :child-sbcl *features*)"
                   "--script" ,(namestring *load-pathname*))
                 :output t :error t :input t))))
;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
  (sb-int:defconstant-eqx OPT
    #+swank '(optimize (speed 3) (safety 2))
    #-swank '(optimize (speed 3) (safety 0) (debug 0))
    #'equal)
  #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
  #-swank (set-dispatch-macro-character
           #\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy

;; BEGIN_INSERTED_CONTENTS
;;;
;;; Strongly connected components of directed graph, 2-SAT
;;;

(defstruct (scc (:constructor %make-scc (graph components sizes count)))
  (graph nil :type vector)
  ;; components[i] := strongly connected component of the i-th vertex
  (components nil :type (simple-array (integer 0 #.most-positive-fixnum) (*)))
  ;; sizes[k] := size of the k-th strongly connected component
  (sizes nil :type (simple-array (integer 0 #.most-positive-fixnum) (*)))
  ;; the total number of strongly connected components
  (count 0 :type (integer 0 #.most-positive-fixnum)))

;; (declaim (inline %make-revgraph))
;; (defun %make-revgraph (graph)
;;   (let* ((n (length graph))
;;          (revgraph (make-array n :element-type 'list :initial-element nil)))
;;     (dotimes (i n)
;;       (dolist (dest (aref graph i))
;;         (push i (aref revgraph dest))))
;;     revgraph))

;; Reference: http://www.prefield.com/algorithm/graph/strongly_connected_components.html
;; This is faster than well-known Kosaraju's algorithm because it doesn't
;; generate a reversed graph. I don't know the first person who referred to this
;; algorithm (tmaehara's invention?)
(defun make-scc (graph)
  (declare (optimize (speed 3))
           (vector graph))
  (let* ((n (length graph))
         (ord 0)
         (ords (make-array n :element-type 'fixnum :initial-element -1)) ; in-order
         ;; store the lowest in-order number as the representative element of a
         ;; strongly connected component
         (lowests (make-array n :element-type 'fixnum))
         (components (make-array n :element-type '(integer 0 #.most-positive-fixnum)))
         (comp-index 0) ; index number of component
         (sizes (make-array n :element-type '(integer 0 #.most-positive-fixnum)
                              :initial-element 0))
         (stack (make-array n :element-type '(integer 0 #.most-positive-fixnum)))
         (end 0) ; stack pointer
         (in-stack (make-array n :element-type 'bit :initial-element 0)))
    (declare ((integer 0 #.most-positive-fixnum) ord end comp-index))
    (labels ((%push (v)
               (setf (aref stack end) v
                     (aref in-stack v) 1)
               (incf end))
             (%pop ()
               (decf end)
               (let ((v (aref stack end)))
                 (setf (aref in-stack v) 0)
                 v))
             (visit (v)
               (setf (aref ords v) ord
                     (aref lowests v) ord)
               (incf ord)
               (%push v)
               (dolist (next (aref graph v))
                 (cond ((= -1 (aref ords next))
                        (visit next)
                        (setf (aref lowests v)
                              (min (aref lowests v) (aref lowests next))))
                       ((= 1 (aref in-stack next))
                        (setf (aref lowests v)
                              (min (aref lowests v) (aref ords next))))))
               (when (= (aref lowests v) (aref ords v))
                 (loop for size of-type (integer 0 #.most-positive-fixnum) from 1
                       for w = (%pop)
                       do (setf (aref components w) comp-index)
                       until (= v w)
                       finally (setf (aref sizes comp-index) size)
                               (incf comp-index)))))
      (dotimes (v n)
        (when (= -1 (aref ords v))
          (visit v)))
      (%make-scc graph components sizes comp-index))))
;; (defun make-scc (graph &optional revgraph)
;;   "GRAPH := vector of adjacency lists
;; REVGRAPH := NIL | reversed graph of GRAPH"
;;   (declare (optimize (speed 3))
;;            (vector graph)
;;            ((or null vector) revgraph))
;;   (let* ((revgraph (or revgraph (%make-revgraph graph)))
;;          (n (length graph))
;;          (visited (make-array n :element-type 'bit :initial-element 0))
;;          (posts (make-array n :element-type '(integer 0 #.most-positive-fixnum)))
;;          (components (make-array n :element-type '(integer 0 #.most-positive-fixnum)))
;;          (sizes (make-array n :element-type '(integer 0 #.most-positive-fixnum)
;;                             :initial-element 0))
;;          (pointer 0)
;;          (ord 0) ; ordinal number for a strongly connected component
;;          )
;;     (declare ((integer 0 #.most-positive-fixnum) pointer ord))
;;     (assert (= n (length revgraph)))
;;     (labels ((dfs (v)
;;                (setf (aref visited v) 1)
;;                (dolist (neighbor (aref graph v))
;;                  (when (zerop (aref visited neighbor))
;;                    (dfs neighbor)))
;;                (setf (aref posts pointer) v)
;;                (incf pointer))
;;              (reversed-dfs (v ord)
;;                (setf (aref visited v) 1
;;                      (aref components v) ord)
;;                (incf (aref sizes ord))
;;                (dolist (neighbor (aref revgraph v))
;;                  (when (zerop (aref visited neighbor))
;;                    (reversed-dfs neighbor ord)))))
;;       (dotimes (v n)
;;         (when (zerop (aref visited v))
;;           (dfs v)))
;;       (fill visited 0)
;;       (loop for i from (- n 1) downto 0
;;             for v = (aref posts i)
;;             when (zerop (aref visited v))
;;             do (reversed-dfs v ord)
;;                (incf ord))
;;       (%make-scc graph revgraph posts components sizes ord))))

(declaim (ftype (function * (values (simple-array t (*)) &optional)) make-condensed-graph))
(defun make-condensed-graph (scc)
  "Does graph condensation.

This function is non-destructive. The resultant graph doesn't contain self-loops
even if the given graph does."
  (declare (optimize (speed 3)))
  (let* ((graph (scc-graph scc))
         (n (length graph))
         (comp-n (scc-count scc))
         (components (scc-components scc))
         (condensed (make-array comp-n :element-type t)))
    (dotimes (i comp-n)
      (setf (aref condensed i) (make-hash-table :test #'eql)))
    (dotimes (i n)
      (let ((i-comp (aref components i)))
        (dolist (neighbor (aref graph i))
          (let ((neighbor-comp (aref components neighbor)))
            (unless (= i-comp neighbor-comp)
              (setf (gethash neighbor-comp (aref condensed i-comp)) t))))))
    (dotimes (i comp-n)
      (setf (aref condensed i)
            (loop for x being each hash-key of (aref condensed i) collect x)))
    condensed))

;;;
;;; 2-SAT
;;;

(defstruct (2sat (:constructor make-2sat
                     (size
                      &aux
                      (graph (make-array (* 2 size) :element-type 'list :initial-element nil)))))
  (size 0 :type (integer 0 #.most-positive-fixnum))
  (graph nil :type (simple-array list (*)))
  (scc nil :type (or null scc)))

(declaim (inline negate))
(defun negate (p)
  (- -1 p))

(declaim (inline add-implication))
(defun add-implication (2sat p q)
  "Adds `P => Q' to 2SAT."
  (declare (fixnum p q))
  (let ((size (2sat-size 2sat))
        (graph (2sat-graph 2sat)))
    (when (< p 0)
      (setq p (+ size (- -1 p))))
    (when (< q 0)
      (setq q (+ size (- -1 q))))
    (push q (aref graph p))
    2sat))

(declaim (inline add-disjunction))
(defun add-disjunction (2sat p q)
  "Adds `P or Q' to 2SAT."
  (declare (fixnum p q))
  (add-implication 2sat (negate p) q)
  (add-implication 2sat (negate q) p)
  2sat)

(declaim (inline 2sat-solve))
(defun 2sat-solve (2sat)
  "Solves 2-SAT and returns a simple bit vector expressing the boolean of each
variable if it is feasible, otherwise returns NIL."
  (let* ((size (2sat-size 2sat))
         (graph (2sat-graph 2sat))
         (scc (make-scc graph))
         (components (scc-components scc))
         (result (make-array size :element-type 'bit :initial-element 0)))
    (setf (2sat-scc 2sat) scc)
    (loop for v below size
          for v-comp = (aref components v)
          for neg-comp = (aref components (+ v size))
          do (cond ((< v-comp neg-comp)
                    (setf (sbit result v) 1))
                   ((= v-comp neg-comp)
                    (return-from 2sat-solve nil))))
    result))

;; NOTE: not enclosed with (BLOCK NIL)
(defmacro dopairs ((var1 var2 list &optional result) &body body)
  "Iterates BODY for each subset of LIST containing two elements."
  (let ((suffix (gensym))
        (_list (gensym)))
    `(let ((,_list ,list))
       (loop for ,suffix on ,_list
             for ,var1 = (car ,suffix)
             do (dolist (,var2 (cdr ,suffix))
                  ,@body))
       ,result)))

(defmacro dbg (&rest forms)
  #+swank
  (if (= (length forms) 1)
      `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
      `(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
  #-swank (declare (ignore forms)))

(defmacro define-int-types (&rest bits)
  `(progn
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)

(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
  (let ((*read-default-float-format* 'double-float))
    (prog1 (princ obj stream) (terpri stream))))

(defconstant +mod+ 1000000007)

;;;
;;; Body
;;;
(defun main ()
  (let* ((n (read))
         (us (make-array n :element-type 'simple-string))
         (table (make-hash-table :test #'equal))
         (2sat (make-2sat n)))
    (when (> n 52)
      (write-line "Impossible")
      (return-from main))
    (dotimes (i n)
      (let* ((u (read-line))
             (pre1 (subseq u 0 1))
             (suf2 (subseq u 1 3))
             (pre2 (subseq u 0 2))
             (suf1 (subseq u 2 3)))
        (declare (simple-string u))
        (push i (gethash pre1 table))
        (push i (gethash suf2 table))
        (push (negate i) (gethash pre2 table))
        (push (negate i) (gethash suf1 table))
        (setf (aref us i) u)))
    (loop for set being each hash-value of table
          do (dopairs (i j set)
               (declare (fixnum i j))
               ;; cannot be true simultaneously
               (add-disjunction 2sat (negate i) (negate j))))
    (let ((result (2sat-solve 2sat)))
      (if (null result)
          (write-line "Impossible")
          (dotimes (i n)
            (let ((u (aref us i)))
              (if (= 1 (sbit result i))
                  (format t "~A ~A~A~%" (aref u 0) (aref u 1) (aref u 2))
                  (format t "~A~A ~A~%" (aref u 0) (aref u 1) (aref u 2)))))))))

#-swank (main)

;;;
;;; Test and benchmark
;;;

#+swank
(defun io-equal (in-string out-string &key (function #'main) (test #'equal))
  "Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if
the string output to *STANDARD-OUTPUT* is equal to OUT-STRING."
  (labels ((ensure-last-lf (s)
             (if (eql (uiop:last-char s) #\Linefeed)
                 s
                 (uiop:strcat s uiop:+lf+))))
    (funcall test
             (ensure-last-lf out-string)
             (with-output-to-string (out)
               (let ((*standard-output* out))
                 (with-input-from-string (*standard-input* (ensure-last-lf in-string))
                   (funcall function)))))))

#+swank
(defun get-clipbrd ()
  (with-output-to-string (out)
    (run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t)))

#+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname))
#+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*))

#+swank
(defun run (&optional thing (out *standard-output*))
  "THING := null | string | symbol | pathname

null: run #'MAIN using the text on clipboard as input.
string: run #'MAIN using the string as input.
symbol: alias of FIVEAM:RUN!.
pathname: run #'MAIN using the text file as input."
  (let ((*standard-output* out))
    (etypecase thing
      (null
       (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd)))
         (main)))
      (string
       (with-input-from-string (*standard-input* (delete #\Return thing))
         (main)))
      (symbol (5am:run! thing))
      (pathname
       (with-open-file (*standard-input* thing)
         (main))))))

#+swank
(defun gen-dat ()
  (uiop:with-output-file (out *dat-pathname* :if-exists :supersede)
    (format out "")))

#+swank
(defun bench (&optional (out (make-broadcast-stream)))
  (time (run *dat-pathname* out)))
0