結果

問題 No.995 タピオカオイシクナーレ
ユーザー petite_progpetite_prog
提出日時 2020-02-22 18:13:23
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,440 bytes
コンパイル時間 275 ms
コンパイル使用メモリ 13,056 KB
実行使用メモリ 12,032 KB
最終ジャッジ日時 2024-10-09 20:27:29
合計ジャッジ時間 2,538 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 3
other RE * 23
権限があれば一括ダウンロードができます

ソースコード

diff #

#
#     ⋀_⋀  
#    (・ω・)  
# ./ U ∽ U\
#  │* 合 *│
#  │* 格 *│ 
#  │* 祈 *│ 
#  │* 願 *│ 
#  │*   *│ 
#       ̄
#
import sys
sys.setrecursionlimit(10**6)
input=sys.stdin.readline
from math import floor,sqrt,factorial,hypot,log #log2ないyp
from heapq import heappop, heappush, heappushpop
from collections import Counter,defaultdict,deque
from itertools import accumulate,permutations,combinations,product,combinations_with_replacement
from bisect import bisect_left,bisect_right
from copy import deepcopy
from fractions import gcd
from random import randint
import numpy
def ceil(a,b): return (a+b-1)//b
inf=float('inf')
mod = 10**9+7
def pprint(*A): 
    for a in A:     print(*a,sep='\n')
def INT_(n): return int(n)-1
def MI(): return map(int,input().split())
def MF(): return map(float, input().split())
def MI_(): return map(INT_,input().split())
def LI(): return list(MI())
def LI_(): return [int(x) - 1 for x in input().split()]
def LF(): return list(MF())
def LIN(n:int): return [I() for _ in range(n)]
def LLIN(n: int): return [LI() for _ in range(n)]
def LLIN_(n: int): return [LI_() for _ in range(n)]
def LLI(): return [list(map(int, l.split() )) for l in input()]
def I(): return int(input())
def F(): return float(input())
def ST(): return input().replace('\n', '')
#mint
class ModInt:
    def __init__(self, x):
        self.x = x % mod
    
    def __str__(self):
        return str(self.x)
    
    __repr__ = __str__

    def __add__(self, other):
        if isinstance(other, ModInt):
            return ModInt(self.x + other.x)
        else:
            return ModInt(self.x + other)

    __radd__ = __add__
        
    def __sub__(self, other):
        if isinstance(other, ModInt):
            return ModInt(self.x - other.x)
        else:
            return ModInt(self.x - other)

    def __rsub__(self, other):
        if isinstance(other, ModInt):
            return ModInt(other.x - self.x)
        else:
            return ModInt(other - self.x)

    def __mul__(self, other):
        if isinstance(other, ModInt):
            return ModInt(self.x * other.x)
        else:
            return ModInt(self.x * other)

    __rmul__ = __mul__

    def __truediv__(self, other):
        if isinstance(other, ModInt):
            return ModInt(self.x * pow(other.x, mod-2,mod))
        else:
            return ModInt(self.x * pow(other, mod - 2, mod))
            
    def __rtruediv(self, other):
        if isinstance(other, self):
            return ModInt(other * pow(self.x, mod - 2, mod))
        else:
            return ModInt(other.x * pow(self.x, mod - 2, mod))
            

    def __pow__(self, other):
        if isinstance(other, ModInt):
            return ModInt(pow(self.x, other.x, mod))
        else:
            return ModInt(pow(self.x, other, mod))
            

    def __rpow__(self, other):
        if isinstance(other, ModInt):
            return ModInt(pow(other.x, self.x, mod))
        else:
            return ModInt(pow(other, self.x, mod))

def main():
    N,M,K,P,Q=MI()
    D=LIN(N)
    tapi = sum(D[:M])
    kitchen = sum(D[M:])
    P=ModInt(P)
    Q=ModInt(Q)
    mat = numpy.matrix([[1-P/Q, P/Q], [P/Q, 1-P/Q]])
    mat_k = numpy.linalg.matrix_power(mat, K)
    vec = [tapi,kitchen]
    ans = numpy.dot(mat_k,vec)
    print(ans[0,0])

    
if __name__ == '__main__':
    main()
0