結果

問題 No.995 タピオカオイシクナーレ
ユーザー tanimani364tanimani364
提出日時 2020-02-23 15:30:44
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 14 ms / 2,000 ms
コード長 6,132 bytes
コンパイル時間 1,604 ms
コンパイル使用メモリ 148,376 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-10 02:00:44
合計ジャッジ時間 2,804 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 3 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 14 ms
5,248 KB
testcase_17 AC 14 ms
5,248 KB
testcase_18 AC 14 ms
5,248 KB
testcase_19 AC 14 ms
5,248 KB
testcase_20 AC 14 ms
5,248 KB
testcase_21 AC 14 ms
5,248 KB
testcase_22 AC 14 ms
5,248 KB
testcase_23 AC 14 ms
5,248 KB
testcase_24 AC 14 ms
5,248 KB
testcase_25 AC 14 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<map>
#include<set>
#include<cstdio>
#include<cmath>
#include<deque>
#include<numeric>
#include<queue>
#include<stack>
#include<cstring>
#include<limits>
#include<functional>
#include<unordered_set>
#include<iomanip>
#include<cassert>
#include<regex>
#include<bitset>
#include<complex>
#include<chrono>
#define rep(i,a) for(int i=(int)0;i<(int)a;++i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(),x.end()
using ll=long long;
constexpr ll mod = 1e9 + 7;
constexpr ll INF = 1LL << 60;

ll gcd(ll n, ll m) {
	ll tmp;
	while (m!=0) {
		tmp = n % m;
		n = m;
		m = tmp;
	}
	return n;
}

ll lcm(ll n, ll m) {
	return abs(n * m) / gcd(n, m);//gl=xy
}
 
template<class T> inline bool chmin(T& a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template<class T> inline bool chmax(T& a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}
 
using namespace std;

//ここから
template< class T >
struct Matrix {
  vector< vector< T > > A;

  Matrix() {}

  Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}

  Matrix(size_t n) : A(n, vector< T >(n, 0)) {};

  size_t height() const {
    return (A.size());
  }

  size_t width() const {
    return (A[0].size());
  }

  inline const vector< T > &operator[](int k) const {
    return (A.at(k));
  }

  inline vector< T > &operator[](int k) {
    return (A.at(k));
  }

  static Matrix I(size_t n) {
    Matrix mat(n);
    for(int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    size_t n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector< vector< T > > C(n, vector< T >(m, 0));
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        for(int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const {
    return (Matrix(*this) += B);
  }

  Matrix operator-(const Matrix &B) const {
    return (Matrix(*this) -= B);
  }

  Matrix operator*(const Matrix &B) const {
    return (Matrix(*this) *= B);
  }

  Matrix operator^(const long long k) const {
    return (Matrix(*this) ^= k);
  }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for(int i = 0; i < n; i++) {
      os << "[";
      for(int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }


  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for(int i = 0; i < width(); i++) {
      int idx = -1;
      for(int j = i; j < width(); j++) {
        if(B[j][i] != 0) idx = j;
      }
      if(idx == -1) return (0);
      if(i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for(int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for(int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for(int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< mod >;



void solve(){
  ll n,m,k;
  modint p,q;
  cin>>n>>m>>k>>p>>q;
  vector<ll>b(n);
  rep(i,n)cin>>b[i];
  //1つ前の試行しか影響しないのでマルコフ連鎖の推移確率行列をつかう
  Matrix<modint>mt(2);
  mt[0][0]=modint(1)-p/q;
  mt[0][1]=p/q;
  mt[1][0]=p/q;
  mt[1][1]=modint(1)-p/q;
  mt^=k;
  modint ans=0;
  rep(i,m)ans+=mt[0][0]*b[i];
  for(int i=m;i<n;++i)ans+=mt[0][1]*b[i];
  cout<<ans<<endl;
}

int main(){
	ios::sync_with_stdio(false);
  cin.tie(0);
	cout<<fixed<<setprecision(15);
  solve();
	return 0;
}
0