結果
問題 | No.995 タピオカオイシクナーレ |
ユーザー | tanimani364 |
提出日時 | 2020-02-23 15:30:44 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 14 ms / 2,000 ms |
コード長 | 6,132 bytes |
コンパイル時間 | 1,604 ms |
コンパイル使用メモリ | 148,376 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-10 02:00:44 |
合計ジャッジ時間 | 2,804 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 14 ms
5,248 KB |
testcase_17 | AC | 14 ms
5,248 KB |
testcase_18 | AC | 14 ms
5,248 KB |
testcase_19 | AC | 14 ms
5,248 KB |
testcase_20 | AC | 14 ms
5,248 KB |
testcase_21 | AC | 14 ms
5,248 KB |
testcase_22 | AC | 14 ms
5,248 KB |
testcase_23 | AC | 14 ms
5,248 KB |
testcase_24 | AC | 14 ms
5,248 KB |
testcase_25 | AC | 14 ms
5,248 KB |
ソースコード
#include<iostream> #include<string> #include<vector> #include<algorithm> #include<map> #include<set> #include<cstdio> #include<cmath> #include<deque> #include<numeric> #include<queue> #include<stack> #include<cstring> #include<limits> #include<functional> #include<unordered_set> #include<iomanip> #include<cassert> #include<regex> #include<bitset> #include<complex> #include<chrono> #define rep(i,a) for(int i=(int)0;i<(int)a;++i) #define pb push_back #define eb emplace_back #define all(x) x.begin(),x.end() using ll=long long; constexpr ll mod = 1e9 + 7; constexpr ll INF = 1LL << 60; ll gcd(ll n, ll m) { ll tmp; while (m!=0) { tmp = n % m; n = m; m = tmp; } return n; } ll lcm(ll n, ll m) { return abs(n * m) / gcd(n, m);//gl=xy } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } using namespace std; //ここから template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; void solve(){ ll n,m,k; modint p,q; cin>>n>>m>>k>>p>>q; vector<ll>b(n); rep(i,n)cin>>b[i]; //1つ前の試行しか影響しないのでマルコフ連鎖の推移確率行列をつかう Matrix<modint>mt(2); mt[0][0]=modint(1)-p/q; mt[0][1]=p/q; mt[1][0]=p/q; mt[1][1]=modint(1)-p/q; mt^=k; modint ans=0; rep(i,m)ans+=mt[0][0]*b[i]; for(int i=m;i<n;++i)ans+=mt[0][1]*b[i]; cout<<ans<<endl; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout<<fixed<<setprecision(15); solve(); return 0; }