結果
問題 | No.997 Jumping Kangaroo |
ユーザー | Chanyuh |
提出日時 | 2020-02-23 17:09:09 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,614 bytes |
コンパイル時間 | 2,057 ms |
コンパイル使用メモリ | 205,948 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-10 04:17:58 |
合計ジャッジ時間 | 2,957 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 2 ms
6,820 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
6,820 KB |
testcase_25 | AC | 2 ms
6,820 KB |
testcase_26 | AC | 2 ms
6,820 KB |
testcase_27 | AC | 2 ms
6,816 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair<int, int> P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define Per(i,sta,n) for(int i=n-1;i>=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; typedef complex<ld> Point; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair<ll, ll> LP; template<int mod> struct ModInt { long long x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const {return x;} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } static ModInt add_identity(){return ModInt(0);} static ModInt mul_identity(){return ModInt(1);} ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long p) const{ int a = x; if (p==0) return 1; if (p==1) return ModInt(a); if (p%2==1) return (ModInt(a)*ModInt(a)).power(p/2)*ModInt(a); else return (ModInt(a)*ModInt(a)).power(p/2); } ModInt power(const ModInt p) const{ return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt<mod> &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt<mod> &a) { long long x; is >> x; a = ModInt<mod>(x); return (is); } }; using modint = ModInt<mod>; int n,w,a[45]; ll k; template<typename R, size_t N> struct SquareMatrix{ typedef array<R, N> arr; typedef array<arr, N> mat; mat dat; SquareMatrix(){ for(size_t i=0;i<N;i++) for(size_t j=0;j<N;j++) dat[i][j]=R::add_identity(); } bool operator==(const SquareMatrix& a) const{ return dat==a.dat; } size_t size() const{return N;} arr& operator[](size_t k){return dat[k];} const arr& operator[](size_t k) const {return dat[k];} static SquareMatrix add_identity(){return SquareMatrix();} static SquareMatrix mul_identity(){ SquareMatrix res; for(size_t i=0;i<N;i++) res[i][i]=R::mul_identity(); return res; } SquareMatrix operator*(const SquareMatrix &B) const{ SquareMatrix res; for(size_t i=0;i<N;i++) for(size_t j=0;j<N;j++) for(size_t k=0;k<N;k++) res[i][j]=res[i][j]+(dat[i][k]*B[k][j]); return res; } SquareMatrix operator+(const SquareMatrix &B) const{ SquareMatrix res; for(size_t i=0;i<N;i++) for(size_t j=0;j<N;j++) res[i][j]=dat[i][j]+B[i][j]; return res; } SquareMatrix pow(long long n) const{ SquareMatrix a=*this,res=mul_identity(); while(n){ if(n&1) res=res*a; a=a*a; n>>=1; } return res; } }; modint dp(int m,int ban=-1){ vector<modint> v(m+1,0); v[0]=1; Rep(i,0,m+1){ rep(j,n){ if(i+a[j]==ban) continue; if(i+a[j]<=m){ v[i+a[j]]+=v[i]; } } } return v[m]; } void solve(){ cin >> n >> w >> k; rep(i,n){ cin >> a[i]; } modint p=dp(w); modint q=dp(2*w,w); using SM = SquareMatrix<modint, 2>; SM A; A[0][0]=p;A[0][1]=q;A[1][0]=(modint)1; A=A.pow(k); cout << A[0][0] << endl; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }