結果

問題 No.997 Jumping Kangaroo
ユーザー ChanyuhChanyuh
提出日時 2020-02-23 17:22:16
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 4,265 bytes
コンパイル時間 1,035 ms
コンパイル使用メモリ 107,528 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-10 04:52:57
合計ジャッジ時間 2,243 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 1 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 1 ms
6,816 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 1 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 1 ms
6,816 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 2 ms
6,816 KB
testcase_15 AC 1 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,820 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 1 ms
6,820 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 1 ms
6,816 KB
testcase_23 AC 2 ms
6,820 KB
testcase_24 AC 2 ms
6,820 KB
testcase_25 AC 2 ms
6,816 KB
testcase_26 AC 2 ms
6,816 KB
testcase_27 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<array>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll mod = 1000000007;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;

template<typename T,T MOD = 1000000007>
struct Mint{
  static constexpr T mod = MOD;
  T v;
  Mint():v(0){}
  Mint(signed v):v(v){}
  Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}

  Mint pow(long long k){
    Mint res(1),tmp(v);
    while(k){
      if(k&1) res*=tmp;
      tmp*=tmp;
      k>>=1;
    }
    return res;
  }

  static Mint add_identity(){return Mint(0);}
  static Mint mul_identity(){return Mint(1);}

  Mint inv(){return pow(MOD-2);}

  Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
  Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
  Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
  Mint& operator/=(Mint a){return (*this)*=a.inv();}

  Mint operator+(Mint a) const{return Mint(v)+=a;}
  Mint operator-(Mint a) const{return Mint(v)-=a;}
  Mint operator*(Mint a) const{return Mint(v)*=a;}
  Mint operator/(Mint a) const{return Mint(v)/=a;}

  Mint operator-() const{return v?Mint(MOD-v):Mint(v);}

  bool operator==(const Mint a)const{return v==a.v;}
  bool operator!=(const Mint a)const{return v!=a.v;}
  bool operator <(const Mint a)const{return v <a.v;}

  static Mint comb(long long n,int k){
    Mint num(1),dom(1);
    for(int i=0;i<k;i++){
      num*=Mint(n-i);
      dom*=Mint(i+1);
    }
    return num/dom;
  }
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}




template<typename R, size_t N>
struct SquareMatrix{
  typedef array<R, N> arr;
  typedef array<arr, N> mat;
  mat dat;

  SquareMatrix(){
    for(size_t i=0;i<N;i++)
      for(size_t j=0;j<N;j++)
        dat[i][j]=R::add_identity();
  }

  bool operator==(const SquareMatrix& a) const{
    return dat==a.dat;
  }

  size_t size() const{return N;}
  arr& operator[](size_t k){return dat[k];}
  const arr& operator[](size_t k) const {return dat[k];}

  static SquareMatrix add_identity(){return SquareMatrix();}
  static SquareMatrix mul_identity(){
    SquareMatrix res;
    for(size_t i=0;i<N;i++) res[i][i]=R::mul_identity();
    return res;
  }

  SquareMatrix operator*(const SquareMatrix &B) const{
    SquareMatrix res;
    for(size_t i=0;i<N;i++)
      for(size_t j=0;j<N;j++)
        for(size_t k=0;k<N;k++)
          res[i][j]=res[i][j]+(dat[i][k]*B[k][j]);
    return res;
  }

  SquareMatrix operator+(const SquareMatrix &B) const{
    SquareMatrix res;
    for(size_t i=0;i<N;i++)
      for(size_t j=0;j<N;j++)
        res[i][j]=dat[i][j]+B[i][j];
    return res;
  }

  SquareMatrix pow(long long n) const{
    SquareMatrix a=*this,res=mul_identity();
    while(n){
      if(n&1) res=res*a;
      a=a*a;
      n>>=1;
    }
    return res;
  }
};

using M = Mint<int>;



void solve(){
  int n,w;ll k;
  vector<int> as;
  
  cin >> n >> w >> k;
  as.resize(n);
  rep(i,n){
    cin >> as[i];
  }
  vector<M> dp(w*10);
  dp[0]=M(1);
  for(int i=0;i<w;i++)
    for(int a:as)
      dp[i+a]+=dp[i];
  M p=dp[w];
  dp[w]=0;
  for(int i=w;i<w*2;i++)
    for(int a:as)
      dp[i+a]+=dp[i];
  M q=dp[w+w];

  using SM = SquareMatrix<M,2>;
  SM A;
  
  A[0][0]=p;A[0][1]=q;A[1][0]=(M)1;
  
  
  A=A.pow(k);
  
  cout << A[0][0] << endl;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << fixed << setprecision(50);
    solve();
}
0