結果
問題 | No.502 階乗を計算するだけ |
ユーザー | Kiri8128 |
提出日時 | 2020-02-25 03:01:48 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,786 bytes |
コンパイル時間 | 130 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 37,188 KB |
最終ジャッジ日時 | 2024-10-13 04:23:28 |
合計ジャッジ時間 | 4,770 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 29 ms
16,256 KB |
testcase_01 | AC | 29 ms
11,008 KB |
testcase_02 | AC | 29 ms
11,008 KB |
testcase_03 | AC | 29 ms
11,008 KB |
testcase_04 | AC | 29 ms
11,008 KB |
testcase_05 | AC | 29 ms
11,008 KB |
testcase_06 | AC | 29 ms
11,008 KB |
testcase_07 | AC | 27 ms
11,008 KB |
testcase_08 | AC | 29 ms
11,008 KB |
testcase_09 | AC | 28 ms
11,008 KB |
testcase_10 | AC | 29 ms
11,008 KB |
testcase_11 | AC | 29 ms
11,008 KB |
testcase_12 | AC | 29 ms
11,008 KB |
testcase_13 | AC | 29 ms
11,008 KB |
testcase_14 | AC | 29 ms
11,008 KB |
testcase_15 | AC | 28 ms
11,008 KB |
testcase_16 | AC | 28 ms
11,008 KB |
testcase_17 | AC | 29 ms
11,008 KB |
testcase_18 | AC | 29 ms
11,008 KB |
testcase_19 | AC | 29 ms
11,008 KB |
testcase_20 | AC | 27 ms
11,136 KB |
testcase_21 | AC | 29 ms
11,008 KB |
testcase_22 | AC | 94 ms
11,776 KB |
testcase_23 | AC | 60 ms
11,392 KB |
testcase_24 | AC | 93 ms
11,904 KB |
testcase_25 | AC | 60 ms
11,264 KB |
testcase_26 | AC | 95 ms
11,776 KB |
testcase_27 | AC | 62 ms
11,392 KB |
testcase_28 | AC | 96 ms
11,904 KB |
testcase_29 | AC | 60 ms
11,392 KB |
testcase_30 | AC | 95 ms
11,904 KB |
testcase_31 | AC | 93 ms
11,904 KB |
testcase_32 | TLE | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
ソースコード
k = 74 K = 1<<k nu = lambda L: int("".join([bin(K+a)[-k:] for a in L[::-1]]), 2) st = lambda n: bin(n)[2:] + "0" li = lambda s, l: [int(a, 2) if len(a) else 0 for a in [s[-(i+1)*k-1:-i*k-1] for i in range(l)]] def grow(d, v, h): h += [0] * d f = [(-1 if (i+d) % 2 else 1) * fainv[i] * fainv[d-i] % P * h[i] % P for i in range(d+1)] for idx, a in enumerate([d+1, d * fa[v-1] * fainv[v] % P, (d * fa[v-1] * fainv[v] + d + 1) % P]): g = [pow(a - d + i - 1, P-2, P) if i else 0 for i in range(2*d+2)] fg = li(st(nu(f) * nu(g)), d * 8 - 1) p = 1 for i in range(d+1): p = p * (a-i) % P for i in range(d+1): fg[d+i+1] = fg[d+i+1] * p % P p = p * (a+i+1) % P * pow(a-d+i, P-2, P) % P if idx == 1: for i in range(d+1): h[i] = h[i] * fg[d+i+1] % P elif idx == 0: for i in range(d): h[i+d+1] = fg[d+i+1] elif idx == 2: for i in range(d): h[i+d+1] = h[i+d+1] * fg[d+i+1] % P return h # Create a table of the factorial of the first v+2 multiples of v, i.e., [0!, v!, 2v!, ..., (v(v+1))!] def create_table(v): s = 1 X = [1, v+1] while s < v: X = grow(s, v, X) s *= 2 table = [1] for x in X: table.append(table[-1] * x % P) return table def fact(i, table): a = table[i//v] for j in range(i//v*v+1, i+1): a = a * j % P return a P = 10**9+7 N = int(input()) v = 1 << (N.bit_length() + 1) // 2 fa = [1] * (2*v+2) fainv = [1] * (2*v+2) for i in range(2*v+1): fa[i+1] = fa[i] * (i+1) % P fainv[-1] = pow(fa[-1], P-2, P) for i in range(2*v+1)[::-1]: fainv[i] = fainv[i+1] * (i+1) % P T = create_table(v) print(fact(N, T))