結果
問題 | No.502 階乗を計算するだけ |
ユーザー |
![]() |
提出日時 | 2020-02-25 03:09:05 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,856 bytes |
コンパイル時間 | 110 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 38,444 KB |
最終ジャッジ日時 | 2024-10-13 04:35:30 |
合計ジャッジ時間 | 4,664 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 32 TLE * 1 -- * 19 |
ソースコード
k = 74K = 1<<knu = lambda L: int("".join([bin(K+a)[-k:] for a in L[::-1]]), 2)st = lambda n: bin(n)[2:] + "0"li = lambda s, l: [int(a, 2) if len(a) else 0 for a in [s[-(i+1)*k-1:-i*k-1] for i in range(l)]]def grow(d, v, h):h += [0] * df = [(-1 if (i+d) % 2 else 1) * fainv[i] * fainv[d-i] % P * h[i] % P for i in range(d+1)]for idx, a in enumerate([d+1, d * fa[v-1] * fainv[v] % P, (d * fa[v-1] * fainv[v] + d + 1) % P]):g = [pow(a - d + i - 1, P-2, P) if i else 0 for i in range(2*d+2)]fg = li(st(nu(f) * nu(g)), d * 8 - 1)p = 1for i in range(d+1):p = p * (a-i) % Pfor i in range(d+1):fg[d+i+1] = fg[d+i+1] * p % Pp = p * (a+i+1) % P * pow(a-d+i, P-2, P) % Pif idx == 1:for i in range(d+1):h[i] = h[i] * fg[d+i+1] % Pelif idx == 0:for i in range(d):h[i+d+1] = fg[d+i+1]elif idx == 2:for i in range(d):h[i+d+1] = h[i+d+1] * fg[d+i+1] % Preturn h# Create a table of the factorial of the first v+2 multiples of v, i.e., [0!, v!, 2v!, ..., (v(v+1))!]def create_table(v):s = 1X = [1, v+1]while s < v:X = grow(s, v, X)s *= 2table = [1]for x in X:table.append(table[-1] * x % P)return tabledef fact(i, table):a = table[i//v]for j in range(i//v*v+1, i+1):a = a * j % Preturn aP = 10**9+7N = int(input())if N >= P:print(0)else:v = 1 << (N.bit_length() + 1) // 2fa = [1] * (2*v+2)fainv = [1] * (2*v+2)for i in range(2*v+1):fa[i+1] = fa[i] * (i+1) % Pfainv[-1] = pow(fa[-1], P-2, P)for i in range(2*v+1)[::-1]:fainv[i] = fainv[i+1] * (i+1) % PT = create_table(v)print(fact(N, T))